cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235115 Number of independent vertex subsets of the graph obtained by attaching two pendant edges to each vertex of the star graph S_n (having n vertices; see A235114).

This page as a plain text file.
%I A235115 #21 Sep 08 2022 08:46:06
%S A235115 5,24,116,564,2756,13524,66596,328884,1628036,8074644,40111076,
%T A235115 199506804,993339716,4949921364,24682497956,123144054324,614646529796,
%U A235115 3068937681684,15327508539236,76568823219444,382569238190276,1911746679323604,9554335350106916,47754084564490164,238700054078273156
%N A235115 Number of independent vertex subsets of the graph obtained by attaching two pendant edges to each vertex of the star graph S_n (having n vertices; see A235114).
%C A235115 a(n) is the sum of the entries of row n of the triangle A235114.
%H A235115 Colin Barker, <a href="/A235115/b235115.txt">Table of n, a(n) for n = 1..1000</a>
%H A235115 E. Mandrescu, <a href="http://ajc.maths.uq.edu.au/pdf/53/ajc_v53_p077.pdf">Unimodality of some independence polynomials via their palindromicity</a>, Australasian J. of Combinatorics, 53, 2012, 77-82.
%H A235115 D. Stevanovic, <a href="http://www.pmf.ni.ac.rs/pmf/licne_prezentacije/101/radovi/GTN%20-%20Palindromic%20Independence%20Polynomial/GTN.34(1998).31-36.Acro6.pdf">Graphs with palindromic independence polynomial</a>, Graph Theory Notes of New  York, 34, 1998, 31-36.
%H A235115 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,-20).
%F A235115 a(n) = 4*5^(n-1) + 2^(2*n-2) for n>=1.
%F A235115 G.f.: x*(5 - 21*x)/((1 - 4*x)*(1 - 5*x)).
%F A235115 a(n) = 9*a(n-1) - 20*a(n-2) for n>1. - _Colin Barker_, Jul 31 2017
%e A235115 a(1)=5; indeed, S_1 is the one-vertex graph and after attaching two pendant vertices we obtain the path graph ABC; the independent vertex subsets are: empty, {A}, {B}, {C}, and {A,C}.
%p A235115 seq(4*5^(n-1)+2^(2*n-2), n = 1 .. 27);
%t A235115 Rest@ CoefficientList[Series[x (5 - 21 x)/((1 - 4 x) (1 - 5 x)), {x, 0, 25}], x] (* or *)
%t A235115 LinearRecurrence[{9, -20}, {5, 24}, 25] (* _Michael De Vlieger_, Jul 31 2017 *)
%o A235115 (PARI) Vec(x*(5 - 21*x) / ((1 - 4*x)*(1 - 5*x)) + O(x^30)) \\ _Colin Barker_, Jul 31 2017
%o A235115 (Magma) [4*5^(n-1)+2^(2*n-2): n in [1..25]]; // _Vincenzo Librandi_, Aug 01 2017
%Y A235115 Cf. A235118.
%K A235115 nonn,easy
%O A235115 1,1
%A A235115 _Emeric Deutsch_, Jan 13 2014