cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235118 Number of independent vertex subsets of the graph obtained by attaching two pendant edges to each vertex of the ladder graph L_n (L_n is the 2 X n grid graph; see A235117).

This page as a plain text file.
%I A235118 #17 Jul 26 2022 13:07:20
%S A235118 1,24,544,12416,283136,6457344,147267584,3358621696,76597559296,
%T A235118 1746902974464,39840303284224,908607856050176,20721936531193856,
%U A235118 472589633411088384,10777996606218174464,245805668662673145856,5605905156051426082816,127849665915439602991104
%N A235118 Number of independent vertex subsets of the graph obtained by attaching two pendant edges to each vertex of the ladder graph L_n (L_n is the 2 X n grid graph; see A235117).
%C A235118 Row sums of A235117.
%H A235118 Colin Barker, <a href="/A235118/b235118.txt">Table of n, a(n) for n = 0..700</a>
%H A235118 E. Mandrescu, <a href="http://ajc.maths.uq.edu.au/pdf/53/ajc_v53_p077.pdf">Unimodality of some independence polynomials via their palindromicity</a>, Australasian J. of Combinatorics, 53, 2012, 77-82.
%H A235118 D. Stevanovic, <a href="http://www.pmf.ni.ac.rs/pmf/licne_prezentacije/101/radovi/GTN%20-%20Palindromic%20Independence%20Polynomial/GTN.34(1998).31-36.Acro6.pdf">Graphs with palindromic independence polynomial</a>, Graph Theory Notes of New  York, 34, 1998, 31-36.
%H A235118 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (20,64).
%F A235118 a(0)=1, a(1)=24, a(n) = 20*a(n-1) + 64*a(n-2) for n>=2.
%F A235118 G.f.: (1 + 4*x)/(1 - 20*x - 64*x^2).
%F A235118 a(n) = (((-7+sqrt(41))*(-2*(-5+sqrt(41)))^n + (2*(5+sqrt(41)))^n*(7+sqrt(41))) / (2*sqrt(41))). - _Colin Barker_, Jul 31 2017
%F A235118 a(n) = 4^n*A126501(n). - _R. J. Mathar_, Jul 26 2022
%p A235118 G := (1+4*x)/(1-20*x-64*x^2): Gser := series(G, x = 0, 22): seq(coeff(Gser, x, j), j = 0 .. 20);
%o A235118 (PARI) Vec((1 + 4*x) / (1 - 20*x - 64*x^2) + O(x^30)) \\ _Colin Barker_, Jul 31 2017
%Y A235118 Cf. A235117.
%K A235118 nonn,easy
%O A235118 0,2
%A A235118 _Emeric Deutsch_, Jan 14 2014