This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235154 #37 May 20 2025 21:33:48 %S A235154 13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,113, %T A235154 131,151,181,191,199,211,223,227,229,233,277,311,313,331,337,353,373, %U A235154 383,433,443,449,499,557,577,599,661,677,727,733,757,773,787,797,811 %N A235154 Primes which have one or more occurrences of exactly two different digits. %C A235154 The first term having a repeated digit is 101. %C A235154 a(3402) > 10^10. %H A235154 Michael S. Branicky, <a href="/A235154/b235154.txt">Table of n, a(n) for n = 1..12000</a> (terms 651..3401 from Christopher M. Conrey, terms 1..650 from Colin Barker) %H A235154 David A. Corneth, <a href="/A235154/a235154.gp.txt">PARI program</a> %o A235154 (PARI) s=[]; forprime(n=10, 1000, if(#vecsort(eval(Vec(Str(n))),,8)==2, s=concat(s, n))); s %o A235154 (PARI) is(n)=isprime(n) && #Set(digits(n))==2 \\ _Charles R Greathouse IV_, Feb 23 2017 %o A235154 (PARI) \\ See Corneth link %o A235154 (Python) %o A235154 from sympy import isprime %o A235154 from sympy.utilities.iterables import multiset_permutations %o A235154 from itertools import count, islice, combinations_with_replacement, product %o A235154 def agen(): %o A235154 for digits in count(2): %o A235154 s = set() %o A235154 for pair in product("0123456789", "1379"): %o A235154 if pair[0] == pair[1]: continue %o A235154 for c in combinations_with_replacement(pair, digits): %o A235154 if len(set(c)) < 2 or sum(int(ci) for ci in c)%3 == 0: %o A235154 continue %o A235154 for p in multiset_permutations(c): %o A235154 if p[0] == "0": continue %o A235154 t = int("".join(p)) %o A235154 if isprime(t): %o A235154 s.add(t) %o A235154 yield from sorted(s) %o A235154 print(list(islice(agen(), 100))) # _Michael S. Branicky_, Jan 23 2022 %Y A235154 Cf. A034845, A235155-A235161, A030291. %K A235154 nonn,base %O A235154 1,1 %A A235154 _Colin Barker_, Jan 04 2014