This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235213 #22 Feb 16 2025 08:33:21 %S A235213 2,3,5,7,11,17,23,31,47,73,107,157,233,347,509,743,1103,1627,2399, %T A235213 3541,5227,7717,11383,16811,24799,36599,54011,79699,117619,173573, %U A235213 256163,378041,557891,823309,1215017,1793081,2646167,3905059,5762969,8504759,12550991,18522269 %N A235213 Nearest prime to (2^(e^-gamma))^n, where gamma is the Euler-Mascheroni constant. %C A235213 The nearest integer to (2^(e^-gamma))^n is very close to A018133. %H A235213 Eric W. Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WagstaffsConjecture.html">Wagstaff's Conjecture</a> %H A235213 Eric W. Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EberhartsConjecture.html">Eberhart's Conjecture</a> %F A235213 Nearest prime to (2^(e^-A001620))^n = (2^A080130)^n. %t A235213 f[n_] := Block[{a = (2^Exp[-EulerGamma])^n}, Nearest[{NextPrime[a], NextPrime[a, -1]}, a][[1]]]; Array[f, 42, 2] %o A235213 (PARI) a(n)=my(t=2^(exp(Euler)*n),mn=precprime(t),mx=nextprime(t)); if(mx-t<t-mn, mx, mn) \\ _Charles R Greathouse IV_, Jan 04 2014 %Y A235213 Cf. A000043, A001620, A080130. %K A235213 nonn,easy %O A235213 2,1 %A A235213 _Robert G. Wilson v_, Jan 04 2014