cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235266 Primes whose base-2 representation is also the base-3 representation of a prime.

Original entry on oeis.org

2, 7, 11, 13, 41, 47, 67, 73, 79, 109, 127, 151, 173, 181, 191, 193, 211, 223, 227, 229, 233, 251, 283, 331, 367, 421, 443, 487, 541, 557, 563, 587, 601, 607, 631, 641, 661, 677, 719, 733, 877, 941, 947, 967, 971, 1033, 1187, 1193, 1201, 1301, 1321, 1373, 1447, 1451, 1471, 1531, 1567, 1571, 1657, 1667, 1669, 1697, 1709, 1759
Offset: 1

Views

Author

M. F. Hasler, Jan 05 2014

Keywords

Crossrefs

Cf. A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Maple
    f:= proc(n) local L,i;
      L:= convert(n,base,2);
      isprime(add(L[i]*3^(i-1),i=1..nops(L)))
    end proc:
    select(f, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Jun 03 2019
  • Mathematica
    Select[Prime@ Range@ 250, PrimeQ@ FromDigits[IntegerDigits[#, 2], 3] &] (* Michael De Vlieger, Jun 03 2019 *)
  • PARI
    is(p,b=3,c=2)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ This code can be used for other bases b,c when b>c. See A235265 for code valid for b
    				
  • PARI
    forprime(p=2, 1e3, if(isprime(fromdigits(binary(p), 3)), print1(p", "))) \\ Charles R Greathouse IV, Mar 28 2022
    
  • Python
    from sympy import isprime, nextprime
    def agen(): # generator of terms
        p = 2
        while True:
            p3 = sum(3**i for i, bi in enumerate(bin(p)[2:][::-1]) if bi=='1')
            if isprime(p3):
                yield p
            p = nextprime(p)
    g = agen()
    print([next(g) for n in range(1, 65)]) # Michael S. Branicky, Jan 16 2022

Formula

a(n) is the number whose base-3 representation is the base-2 representation of A235265(n).