A235266 Primes whose base-2 representation is also the base-3 representation of a prime.
2, 7, 11, 13, 41, 47, 67, 73, 79, 109, 127, 151, 173, 181, 191, 193, 211, 223, 227, 229, 233, 251, 283, 331, 367, 421, 443, 487, 541, 557, 563, 587, 601, 607, 631, 641, 661, 677, 719, 733, 877, 941, 947, 967, 971, 1033, 1187, 1193, 1201, 1301, 1321, 1373, 1447, 1451, 1471, 1531, 1567, 1571, 1657, 1667, 1669, 1697, 1709, 1759
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- M. F. Hasler, Primes whose base c expansion is also the base b expansion of a prime
Crossrefs
Programs
-
Maple
f:= proc(n) local L,i; L:= convert(n,base,2); isprime(add(L[i]*3^(i-1),i=1..nops(L))) end proc: select(f, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Jun 03 2019
-
Mathematica
Select[Prime@ Range@ 250, PrimeQ@ FromDigits[IntegerDigits[#, 2], 3] &] (* Michael De Vlieger, Jun 03 2019 *)
-
PARI
is(p,b=3,c=2)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ This code can be used for other bases b,c when b>c. See A235265 for code valid for b
-
PARI
forprime(p=2, 1e3, if(isprime(fromdigits(binary(p), 3)), print1(p", "))) \\ Charles R Greathouse IV, Mar 28 2022
-
Python
from sympy import isprime, nextprime def agen(): # generator of terms p = 2 while True: p3 = sum(3**i for i, bi in enumerate(bin(p)[2:][::-1]) if bi=='1') if isprime(p3): yield p p = nextprime(p) g = agen() print([next(g) for n in range(1, 65)]) # Michael S. Branicky, Jan 16 2022
Formula
a(n) is the number whose base-3 representation is the base-2 representation of A235265(n).