cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235338 a(n) = 8*binomial(11*n+8,n)/(11*n+8).

This page as a plain text file.
%I A235338 #16 May 28 2025 12:35:43
%S A235338 1,8,116,2080,41650,892552,20027112,464550336,11050084695,
%T A235338 268070745800,6607118937848,164979021222400,4164615224071926,
%U A235338 106105019316578800,2724883054841727200,70462458864489354624,1833143662625459289495
%N A235338 a(n) = 8*binomial(11*n+8,n)/(11*n+8).
%C A235338 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=8.
%H A235338 Vincenzo Librandi, <a href="/A235338/b235338.txt">Table of n, a(n) for n = 0..200</a>
%H A235338 J-C. Aval, <a href="https://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
%H A235338 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a> [broken link]
%H A235338 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955.
%F A235338 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=11, r=8.
%t A235338 Table[8 Binomial[11 n + 8, n]/(11 n + 8), {n, 0, 30}]
%o A235338 (PARI) a(n) = 8*binomial(11*n+8, n)/(11*n+8);
%o A235338 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/8))^8+x*O(x^n)); polcoeff(B, n)}
%o A235338 (Magma) [8*Binomial(11*n+8, n)/(11*n+8): n in [0..30]];
%Y A235338 Cf. A230388, A234868, A234869, A234870, A234871, A234872, A234873, A235339, A235340.
%K A235338 nonn
%O A235338 0,2
%A A235338 _Tim Fulford_, Jan 06 2014