cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235343 a(n) = |{0 < k < n: f(n,k) - 1, f(n,k) + 1 and q(f(n,k)) + 1 are all prime with f(n,k) = phi(k) + phi(n-k)/4}|, where phi(.) is Euler's totient function, and q(.) is the strict partition function (A000009).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 3, 3, 2, 4, 2, 2, 3, 4, 4, 2, 3, 0, 3, 2, 3, 3, 3, 3, 4, 0, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 4, 0, 2, 1, 5, 2, 2, 0, 2, 3, 2, 3, 4, 4, 2, 2, 2, 1, 3, 6, 3, 3, 1, 5, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 06 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n >= 60.
(ii) For any integer n > 1234, there is a positive integer k < n such that g(n,k) - 1, g(n,k) + 1 and q(g(n,k)) - 1 are all prime, where g(n,k) = phi(k) + phi(n-k)/8.
Clearly, part (i) implies that there are infinitely many primes of the form q(m) + 1 with m - 1 and m + 1 also prime, and part (ii) implies that there are infinitely many primes of the form q(m) - 1 with m - 1 and m + 1 also prime. As log q(m) is asymptotically equivalent to pi*sqrt(m/3), the conjecture is much stronger than the twin prime conjecture.
We have verified parts (i) and (ii) for n up to 100000 and 60000 respectively.

Examples

			a(50) = 1 since phi(34) + phi(16)/4 = 18 with 18 - 1, 18 + 1 and q(18) + 1 = 47 all prime.
a(215) = 1 since phi(87) + phi(128)/4 = 72 with 72 - 1, 72 + 1 and q(72) + 1 = 36353 all prime.
a(645) = 1 since phi(365) + phi(280)/4 = 312 with 312 - 1, 312 + 1 and q(312) + 1 = 207839472391 all prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/4
    p[n_,k_]:=PrimeQ[f[n,k]-1]&&PrimeQ[f[n,k]+1]&&PrimeQ[PartitionsQ[f[n,k]]+1]
    a[n_]:=Sum[If[p[n,k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]