This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235349 #27 Sep 04 2024 16:43:44 %S A235349 0,1,0,2,2,14,30,146,434,1862,6470,26586,99946,406366,1593774,6492450, %T A235349 26100578,106979894,436906902,1803472874,7446478746,30945624910, %U A235349 128821054846,538584390834,2256485249682,9483898177574 %N A235349 Series reversion of x*(1-x-2*x^2)/(1-x). %C A235349 Derived turbulence series from A235347. %H A235349 Fung Lam, <a href="/A235349/b235349.txt">Table of n, a(n) for n = 0..1000</a> %F A235349 G.f.: ( exp(4*Pi*i/3)*u + exp(2*Pi*i/3)*v - 1/6 )/x, where i=sqrt(-1), %F A235349 u = 1/6*(-10-63*x+3*sqrt(-24*x^3+357*x^2+42*x-27))^(1/3), and %F A235349 v = 1/6*(-10-63*x-3*sqrt(-24*x^3+357*x^2+42*x-27))^(1/3). %F A235349 a(n) ~ sqrt((1-s)^3 / (2*s*(3 - 3*s + s^2))) / (2*sqrt(Pi) * n^(3/2) * r^(n-1/2)), where s = 0.31472177038151893868... is the root of the equation 1-2*s-5*s^2+4*s^3 = 0, and r = s*(1-s-2*s^2)/(1-s) = 0.22374229727550306625... - _Vaclav Kotesovec_, Jan 23 2014 %F A235349 D-finite with recurrence 117*n*(n-1)*a(n) -7*(n-1)*(35*n-66)*a(n-1) +21*(-69*n^2+269*n-254)*a(n-2) +(937*n^2-6403*n+10920)*a(n-3) -28*(n-4)*(2*n-9)*a(n-4)=0. - _R. J. Mathar_, Mar 24 2023 %t A235349 CoefficientList[InverseSeries[Series[x*(1-x-2*x^2)/(1-x), {x, 0, 20}], x],x] (* _Vaclav Kotesovec_, Jan 22 2014 *) %o A235349 (Python) %o A235349 a = [0, 1] %o A235349 for n in range(20): %o A235349 m = len(a) %o A235349 d = 0 %o A235349 for i in range (1, m): %o A235349 for j in range (1, m): %o A235349 if (i+j)%m == 0 and (i+j) <= m: %o A235349 d += a[i]*a[j] %o A235349 g = 0 %o A235349 for i in range (1, m-1): %o A235349 for j in range (1, m-1): %o A235349 for k in range (1, m-1): %o A235349 if (i+j+k)%m == 0 and (i+j+k) <= m: %o A235349 g += a[i]*a[j]*a[k] %o A235349 y = 2*g + d - a[m-1] %o A235349 a.append(y) %o A235349 print(a) %o A235349 (PARI) Vec(serreverse(x*(1-x-2*x^2)/(1-x)+O(x^66))) \\ _Joerg Arndt_, Jan 17 2014 %Y A235349 Cf. A235347, A235348, A235350, A235351, A235352. %K A235349 nonn,easy %O A235349 0,4 %A A235349 _Fung Lam_, Jan 16 2014 %E A235349 Prepended a(0)=0 to adapt to offset 0, _Joerg Arndt_, Jan 23 2014 %E A235349 b-file shifted for offset 0, _Vaclav Kotesovec_, Jan 23 2014