A235358 a(n) = |{0 < k < n: g(n,k) - 1, g(n,k) + 1 and q(g(n,k)) - 1 are all prime with g(n,k) = phi(k) + phi(n-k)/8}|, where phi(.) is Euler's totient function and q(.) is the strict partition function (A000009).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 3, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1
Keywords
Examples
a(50) = 1 since phi(10) + phi(40)/4 = 6 with 6 - 1, 6 + 1 and q(6) - 1 = 3 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/8 p[n_,k_]:=PrimeQ[f[n,k]-1]&&PrimeQ[f[n,k]+1]&&PrimeQ[PartitionsQ[f[n,k]]-1] a[n_]:=Sum[If[p[n,k],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments