This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235362 #33 Jan 16 2023 14:42:20 %S A235362 6,2,9,9,6,0,5,2,4,9,4,7,4,3,6,5,8,2,3,8,3,6,0,5,3,0,3,6,3,9,1,1,4,1, %T A235362 7,5,2,8,5,1,2,5,7,3,2,3,5,0,7,5,3,9,9,0,0,4,0,9,8,7,5,5,6,0,7,7,6,4, %U A235362 9,8,3,8,2,5,6,9,7,9,7,4,1,8,6,4,6,9,8,2,8,1,2,1,8,1,2,7 %N A235362 Decimal expansion of the cube root of 2 divided by 2. %C A235362 Also reciprocal of the real cubic root of 4 and negated real part of either complex cubic root of 2. %H A235362 Richard Zippel, <a href="http://dx.doi.org/10.1007/BFb0013185">The Weyl Computer Algebra Substrate</a> in Design and Implementation of Symbolic Computation Systems: International Symposium, DISCO '93 Gmunden, Austria, September 15-17, 1993. Proceedings, p. 306. %F A235362 2^(1/3)/2 = 1/2^(2/3) = 1/4^(1/3). %F A235362 (-2^(1/3)/2 + sqrt(-3)/4^(1/3))^3 = 2. %F A235362 Equals 1/A005480 = A002580 /2 . - _Wolfdieter Lang_, Jan 02 2023 %e A235362 0.6299605249474365823836053... %p A235362 Digits := 100 ; evalf(1/2^(2/3)) ; # _R. J. Mathar_, Jan 16 2023 %t A235362 RealDigits[1/2^(2/3), 10, 128][[1]] %o A235362 (PARI) sqrtn(1/4,3) \\ _Charles R Greathouse IV_, Apr 14 2014 %Y A235362 Cf. A002580, A010503, A020761, A239797. %K A235362 nonn,cons,easy %O A235362 0,1 %A A235362 _Alonso del Arte_, Jan 07 2014