This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235365 #45 Sep 08 2022 08:46:06 %S A235365 5,7,41,61,5,547,17,7,5,67,41,398581,5,7,21523361,103,5,2851,41,7,5, %T A235365 23535794707,17,61,5,7,41,523,5,6883,926510094425921,7,5,61,41,18427, %U A235365 5,7,17,33703,5,82064241848634269407,41,7,5,16921,76801,547,5,7,41,78719947,5,61,17,7,5,3187,41 %N A235365 Smallest odd prime factor of 3^n + 1, for n > 1. %C A235365 Levi Ben Gerson (1288-1344) proved that 3^n + 1 = 2^m has no solution in integers if n > 1, by showing that 3^n + l has an odd prime factor. His proof uses remainders after division of powers of 3 by 8 and powers of 2 by 8; see the Lenstra and Peterson links. For an elegant short proof, see the Franklin link. %D A235365 L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, NY 1992; see p. 731. %H A235365 <a href="/A235365/b235365.txt">Table of n, a(n) for n = 2..768</a> %H A235365 Philip Franklin, <a href="http://www.jstor.org/stable/2298495">Problem 2927</a>, Amer. Math. Monthly, 30 (1923), p. 81. %H A235365 Aaron Herschfeld, <a href="http://dx.doi.org/10.1090/S0002-9904-1936-06275-0">The equation 2^x - 3^y = d</a>, Bull. Amer. Math. Soc., 42 (1936), 231-234. %H A235365 Hendrik Lenstra <a href="http://www.msri.org/publications/ln/msri/1998/mandm/lenstra/1/index.html">Harmonic Numbers</a>, MSRI, 1998. %H A235365 J. J. O'Connor and E. F. Robertson, <a href="http://www-history.mcs.st-and.ac.uk/Biographies/Levi.html">Levi ben Gerson</a>, The MacTutor History of Mathematics archive, 2009. %H A235365 Ivars Peterson, <a href="http://archive.is/iRXz">Medieval Harmony</a>, Math Trek, MAA, 2012. %H A235365 Wikipedia, <a href="https://en.wikipedia.org/wiki/Gersonides">Gersonides</a> %F A235365 a(2+4n) = 5 as 3^(2+4n) + 1 = (3^2)*(3^4)^n + 1 = 9*81^n + 1 = 9*(80+1)^n + 1 == 9 + 1 == 0 (mod 5). %F A235365 a(3+6n) = 7 as 3^(3+6n) + 1 = (3^3)*(3^6)^n + 1 = 27*729^n + 1 = 27*(728+1)^n + 1 == 27 + 1 == 0 (mod 7), but 27 * 729^n + 1 == 2*(-1)^n + 1 !== 0 (mod 5). %e A235365 3^2 + 1 = 10 = 2*5, so a(2) = 5. %t A235365 Table[FactorInteger[3^n + 1][[2, 1]], {n, 2, 50}] %o A235365 (Magma) [PrimeDivisors(3^n +1)[2]: n in [2..60] ] ; // _Vincenzo Librandi_, Mar 16 2019 %Y A235365 See A235366 for 3^n - 1. %Y A235365 Cf. also A003586 (products 2^m * 3^n), A006899, A061987, A108906. %K A235365 nonn %O A235365 2,1 %A A235365 _Jonathan Sondow_, Jan 19 2014 %E A235365 Terms to a(132) in b-file from _Vincenzo Librandi_, Mar 16 2019 %E A235365 a(133)-a(658) in b-file from _Amiram Eldar_, Feb 05 2020 %E A235365 a(659)-a(768) in b-file from _Max Alekseyev_, Apr 27 2022