A235366 Smallest odd prime factor of 3^n - 1.
13, 5, 11, 7, 1093, 5, 13, 11, 23, 5, 797161, 547, 11, 5, 1871, 7, 1597, 5, 13, 23, 47, 5, 11, 398581, 13, 5, 59, 7, 683, 5, 13, 103, 11, 5, 13097927, 1597, 13, 5, 83, 7, 431, 5, 11, 47, 1223, 5, 491, 11, 13, 5, 107, 7, 11, 5, 13, 59, 14425532687, 5, 603901, 683, 13, 5, 11, 7, 221101, 5, 13, 11
Offset: 3
Keywords
Examples
3^3 - 1 = 26 = 2 * 13, so a(3) = 13. 3^4 - 1 = 80 = 2^4 * 5, so a(4) = 5. 3^5 - 1 = 242 = 2 * 11^2, so a(5) = 11.
References
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, NY 1992; see p. 731.
Links
- Max Alekseyev, Table of n, a(n) for n = 3..796 (terms to a(660) from Charles R Greathouse IV)
- P. Franklin, Problem 2927, Amer. Math. Monthly, 30 (1923), p. 81.
- A. Herschfeld, The equation 2^x - 3^y = d, Bull. Amer. Math. Soc., 42 (1936), 231-234.
- H. Lenstra Harmonic Numbers, MSRI, 1998.
- J. J. O'Connor and E. F. Robertson, Levi ben Gerson, The MacTutor History of Mathematics archive, 2009.
- I. Peterson, Medieval Harmony, Math Trek, MAA, 2012.
- Wikipedia, Gersonides
Crossrefs
Programs
-
Mathematica
Table[FactorInteger[3^n - 1][[2, 1]], {n, 3, 50}]
-
PARI
a(n)=factor(3^n>>valuation(3^n-1,2))[1,1] \\ Charles R Greathouse IV, Jan 20 2014
Formula
a(4n) = 5 as 3^(4n)-1 = (3^4)^n-1 = 81^n-1 = (80+1)^n-1 == 0 (mod 5).
a(6+12n) = 7 as 3^(6+12n)-1 = (3^6)^(1+2n)-1 = 729^(1+2n)-1 = (728+1)^(1+2n)-1 == 1^(1+2n)-1 == 0 (mod 7), but 729^(1+2n)-1 = (730-1)^(1+2n)-1 == (-1)^(1+2n)-1 == -2 (mod 5).
Comments