cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235388 Number of groups of order 2n generated by involutions.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 4, 1, 1, 1, 12, 1, 3, 1, 3, 1, 1, 1, 11, 2, 1, 4, 3, 1, 3, 1, 49, 1, 1, 1, 12, 1, 1, 1, 9, 1, 2, 1, 3, 2, 1, 1, 46, 2, 3, 1, 3, 1, 8, 1, 9, 1, 1, 1, 10, 1, 1, 2, 359, 1, 2, 1, 3, 1, 2, 1, 40, 1, 1, 3, 3, 1, 2, 1, 38, 11, 1, 1
Offset: 1

Views

Author

Eric M. Schmidt, Jan 08 2014

Keywords

Comments

a(n) >= A104404(n). This can be proved using the characterization in A104404. Given an Abelian group G, the semidirect product G : , where h^2 = 1 and hgh = g^(-1) for any g in G, is generated by involutions. There is also a semidirect product Q8 : C2 generated by involutions. So an involution-generated group G : C2 exists for any finite group G that has all subgroups normal, and it can be shown that they are all nonisomorphic.

Programs

  • GAP
    IsInvolutionGenerated := G -> Group(Filtered(G, g->g^2=Identity(G)))=G;
    A235388 := function(n) local i, count; count := 0; for i in [1..NrSmallGroups(2*n)] do if IsInvolutionGenerated(SmallGroup(2*n, i)) then count := count + 1; fi; od; return count; end;