A334346
Starts of runs of 3 consecutive binary Moran numbers (A334344).
Original entry on oeis.org
126866286, 133542126, 148891086, 150959502, 173668302, 207567342, 227950542, 257154606, 263874222, 284421582, 295075566, 331190766, 373024206, 390589326, 392805486, 393817806, 395760366, 397921806, 441314766, 459700686, 459990702, 516188142, 527006286, 586869966
Offset: 1
126866286 is a term since 126866286/A000120(126866286) = 7048127, 126866287/A000120(126866287) = 6677173 and 126866288/A000120(126866288) = 7929143 are all prime numbers.
-
binMoranQ[n_] := PrimeQ[n / DigitCount[n, 2, 1]]; bin = binMoranQ /@ Range[3]; seq = {}; Do[If[And @@ bin, AppendTo[seq, k - 3]]; bin = Join[Rest[bin], {binMoranQ[k]}], {k, 4, 2 * 10^8}]; seq
A334371
Starts of runs of 3 consecutive Moran numbers (A001101).
Original entry on oeis.org
3031, 13116, 46824, 201614, 456325, 1310412, 1499434, 1825225, 2217620, 2318423, 2522540, 2784634, 3132380, 3276024, 3931226, 4013113, 4555476, 5017340, 5211380, 6309602, 6338910, 6526835, 7197154, 8678920, 9108023, 9258002, 10256420, 10533620, 10614266, 10810824
Offset: 1
3031 is a term since 3031/(3+0+3+1) = 433, 3032/(3+0+3+2) = 379 and 3033/(3+0+3+3) = 337 are all primes.
-
moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; m = moranQ /@ Range[3]; seq = {}; Do[If[And @@ m, AppendTo[seq, k - 3]]; m = Join[Rest[m], {moranQ[k]}], {k, 4, 10^6}]; seq
A334372
Starts of runs of 4 consecutive Moran numbers (A001101).
Original entry on oeis.org
21481224, 22314620, 25502420, 25502421, 32432425, 130062260, 147026913, 713021425, 922216713, 938710112, 1012101135, 1019292153, 1113068913, 1420791155, 1545743565, 1671500190, 1805406154, 1941702882, 2010317425, 2027025025, 2200277555, 2307662313, 2437253313
Offset: 1
21481224 is a term since 21481224/(2+1+4+8+1+2+2+4) = 895051, 21481225/(2+1+4+8+1+2+2+5) = 859249, 21481226/(2+1+4+8+1+2+2+6) = 826201 and 21481227/(2+1+4+8+1+2+2+7) = 795601 are all primes.
-
moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; m = moranQ /@ Range[4]; seq = {}; Do[If[And @@ m, AppendTo[seq, k - 4]]; m = Join[Rest[m], {moranQ[k]}], {k, 5, 3 * 10^7}]; seq
A334373
Starts of runs of 5 consecutive Moran numbers (A001101).
Original entry on oeis.org
25502420, 5301223225, 13242121221, 32005512020, 74761736450, 213415171233, 221221400424, 232212103220, 243857053493, 685392911334, 732258727252, 889011113804, 905191111482, 1013460525033, 1080719141080, 1229198438214, 1461057000513, 1961972092132, 2157993351414
Offset: 1
25502420 is a term since 25502420, 25502421, 25502422, 25502423 and 25502424 are all Moran numbers.
-
moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; m = moranQ /@ Range[5]; seq = {}; Do[If[And @@ m, AppendTo[seq, k - 5]]; m = Join[Rest[m], {moranQ[k]}], {k, 6, 10^8}]; seq
Showing 1-4 of 4 results.