cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235443 Number of (n+1) X (2+1) 0..1 arrays with the difference between each 2 X 2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise.

Original entry on oeis.org

58, 382, 2476, 15936, 102376, 657290, 4219322, 27083638, 173846264, 1115891712, 7162725052, 45976338618, 295114433334, 1894290182854, 12159131749324, 78047432228320, 500973408338488, 3215664483364362, 20640812260995146
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2014

Keywords

Examples

			Some solutions for n=4:
..1..1..1....0..0..1....0..1..1....1..1..1....1..0..1....1..1..1....0..1..0
..0..0..1....1..0..1....1..1..0....1..0..0....0..0..0....1..1..1....0..0..1
..1..1..1....0..1..0....1..0..0....0..1..0....0..1..0....1..1..1....1..0..0
..1..0..0....1..0..0....0..1..1....1..1..0....1..0..0....0..0..1....1..1..0
..0..0..1....1..0..1....1..0..0....0..1..0....0..1..1....1..0..1....1..0..0
		

Crossrefs

Column 2 of A235449.

Formula

Empirical: a(n) = 8*a(n-1) - 8*a(n-2) - 16*a(n-3) + 12*a(n-4) + 14*a(n-5) - a(n-6) - 2*a(n-7).
Empirical g.f.: 2*x*(29 - 41*x - 58*x^2 + 56*x^3 + 56*x^4 - 5*x^5 - 8*x^6) / ((1 - x - x^2)^2*(1 - 6*x - 3*x^2 + 2*x^3)). - Colin Barker, Oct 19 2018