cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A235443 Number of (n+1) X (2+1) 0..1 arrays with the difference between each 2 X 2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise.

Original entry on oeis.org

58, 382, 2476, 15936, 102376, 657290, 4219322, 27083638, 173846264, 1115891712, 7162725052, 45976338618, 295114433334, 1894290182854, 12159131749324, 78047432228320, 500973408338488, 3215664483364362, 20640812260995146
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2014

Keywords

Examples

			Some solutions for n=4:
..1..1..1....0..0..1....0..1..1....1..1..1....1..0..1....1..1..1....0..1..0
..0..0..1....1..0..1....1..1..0....1..0..0....0..0..0....1..1..1....0..0..1
..1..1..1....0..1..0....1..0..0....0..1..0....0..1..0....1..1..1....1..0..0
..1..0..0....1..0..0....0..1..1....1..1..0....1..0..0....0..0..1....1..1..0
..0..0..1....1..0..1....1..0..0....0..1..0....0..1..1....1..0..1....1..0..0
		

Crossrefs

Column 2 of A235449.

Formula

Empirical: a(n) = 8*a(n-1) - 8*a(n-2) - 16*a(n-3) + 12*a(n-4) + 14*a(n-5) - a(n-6) - 2*a(n-7).
Empirical g.f.: 2*x*(29 - 41*x - 58*x^2 + 56*x^3 + 56*x^4 - 5*x^5 - 8*x^6) / ((1 - x - x^2)^2*(1 - 6*x - 3*x^2 + 2*x^3)). - Colin Barker, Oct 19 2018

A235444 Number of (n+1) X (3+1) 0..1 arrays with the difference between each 2 X 2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise.

Original entry on oeis.org

208, 2476, 28962, 335898, 3886120, 44920240, 519099694, 5998218844, 69307887110, 800828757910, 9253279485850, 106918144830246, 1235398494858302, 14274558937627814, 164937087638756238, 1905785172348833784
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2014

Keywords

Comments

Column 3 of A235449.

Examples

			Some solutions for n=3
..1..0..1..0....1..0..0..1....0..1..0..0....0..1..1..0....1..1..1..0
..0..1..0..0....0..0..1..0....1..1..0..1....0..0..1..0....1..1..1..1
..1..1..0..1....0..1..0..0....1..0..1..1....1..1..1..1....1..0..1..0
..0..0..1..1....0..0..1..0....1..0..0..1....1..0..1..0....1..0..1..0
		

Crossrefs

Cf. A235449.

Formula

Empirical: a(n) = 17*a(n-1) -56*a(n-2) -150*a(n-3) +801*a(n-4) +479*a(n-5) -4435*a(n-6) -871*a(n-7) +12987*a(n-8) +2167*a(n-9) -21439*a(n-10) -5739*a(n-11) +19164*a(n-12) +7862*a(n-13) -7875*a(n-14) -4449*a(n-15) +862*a(n-16) +716*a(n-17) -8*a(n-18) -32*a(n-19).

A235445 Number of (n+1)X(4+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise.

Original entry on oeis.org

742, 15936, 335898, 7017768, 146213244, 3043145826, 63315473350, 1317184566572, 27401048899854, 570010121664030, 11857587445735140, 246666181271526484, 5131244813184060086, 106742118037538403444, 2220490316595946662760
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2014

Keywords

Comments

Column 4 of A235449

Examples

			Some solutions for n=2
..1..1..1..0..1....1..0..1..1..0....1..1..0..0..0....0..1..0..0..0
..1..0..1..1..1....0..0..1..0..0....1..0..1..1..1....1..1..1..1..0
..1..0..0..1..0....0..1..0..1..1....0..0..1..0..0....0..0..0..1..1
		

Formula

Empirical recurrence of order 53 (see link above)

A235446 Number of (n+1)X(5+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise.

Original entry on oeis.org

2644, 102376, 3886120, 146213244, 5485253042, 205551169550, 7699719982722, 288383414393138, 10800536489561114, 404495358726610494, 15148844516247948642, 567341751928412753520, 21247593602541105806608
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2014

Keywords

Comments

Column 5 of A235449

Examples

			Some solutions for n=2
..1..1..1..1..0..1....0..1..0..1..0..0....1..0..1..0..0..1....0..0..0..1..0..1
..0..1..0..1..1..0....0..1..1..0..0..1....0..1..0..1..0..1....0..0..1..0..1..0
..1..1..1..0..0..0....1..1..0..0..1..0....1..0..0..1..0..1....1..0..1..1..0..0
		

A235447 Number of (n+1) X (6+1) 0..1 arrays with the difference between each 2 X 2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise.

Original entry on oeis.org

9418, 657290, 44920240, 3043145826, 205551169550, 13868068262164, 935263088301396, 63064724124453082, 4252224342324710504, 286706640921161498010, 19331099358385310094498, 1303390076791046628378510
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2014

Keywords

Comments

Column 6 of A235449.

Examples

			Some solutions for n=1
..1..1..0..0..1..1..0....0..0..0..1..1..1..0....0..0..0..1..1..1..1
..0..0..1..0..0..0..1....0..0..0..0..0..0..0....1..1..0..0..1..0..0
		

Crossrefs

Cf. A235449.

A235448 Number of (n+1)X(7+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise.

Original entry on oeis.org

33544, 4219322, 519099694, 63315473350, 7699719982722, 935263088301396, 113555975474406500, 13785363846787350466, 1673407961412976159218, 203131147623014349473962, 24657443308255446422188572
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2014

Keywords

Comments

Column 7 of A235449

Examples

			Some solutions for n=1
..0..1..0..1..1..0..0..0....1..1..0..1..1..1..1..1....1..1..0..1..0..0..1..0
..1..1..1..0..1..1..0..1....1..0..1..0..0..0..0..0....1..0..0..0..1..0..0..0
		

A235442 Number of (n+1)X(n+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise.

Original entry on oeis.org

16, 382, 28962, 7017768, 5485253042, 13868068262164, 113555975474406500, 3012872125570872924612
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2014

Keywords

Comments

Diagonal of A235449

Examples

			Some solutions for n=3
..1..1..0..1....0..1..0..1....0..0..1..1....0..0..1..1....1..1..1..1
..1..1..0..1....1..0..1..0....0..0..1..0....0..1..0..1....0..0..1..0
..1..0..0..1....0..1..0..1....0..0..1..1....1..1..1..0....1..1..1..0
..1..1..1..0....1..1..1..1....1..1..1..0....0..0..0..1....0..1..0..1
		
Showing 1-7 of 7 results.