A235453 Triangle T(n, k) = Number of non-equivalent (mod D_4) ways to arrange k indistinguishable points on an n X n square grid so that no three of them are collinear. Triangle read by rows.
1, 0, 1, 2, 1, 1, 3, 8, 13, 15, 5, 1, 3, 21, 70, 181, 217, 142, 28, 4, 6, 49, 290, 1253, 3192, 4699, 3385, 1076, 110, 5, 6, 93, 867, 6044, 27041, 77970, 134353, 129929, 62177, 12511, 717, 11, 10, 171, 2266, 22302, 149217, 672506, 1958674, 3531747, 3695848, 2068757
Offset: 1
Examples
Triangle begins 1, 0; 1, 2, 1, 1; 3, 8, 13, 15, 5, 1; 3, 21, 70, 181, 217, 142, 28, 4; 6, 49, 290, 1253, 3192, 4699, 3385, 1076, 110, 5; 6, 93, 867, 6044, 27041, 77970, 134353, 129929, 62177, 12511, 717, 11; ...
Links
- Heinrich Ludwig, Table of n, a(n) for n = 1..99
- Achim Flammenkamp, Progress in the no-three-in-line problem
- Eric Weisstein's World of Mathematics, No-Three-in-a-Line-Problem
Comments