cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235459 Number of facets of the correlation polytope of degree n.

This page as a plain text file.
%I A235459 #39 Sep 06 2023 01:28:26
%S A235459 2,4,16,56,368,116764,217093472
%N A235459 Number of facets of the correlation polytope of degree n.
%C A235459 The correlation polytope of degree n is the set of symmetric n X n matrices, P such that P[i,j] = Prob(X[i] = 1 and X[j] = 1) where (X[1],...,X[n]) is a sequence of 0/1 valued random variables (not necessarily independent). It is the convex hull of all n X n symmetric 0/1 matrices of rank 1.
%C A235459 The correlation polytope COR(n) is affinely equivalent to CUT(n+1), where CUT(n) is the cut polytope of complete graph on n vertices -- the convex hull of indicator vectors of a cut delta(S) -- where S is a subset of the vertices. The cut delta(S) is the set of edges with one end point in S and one endpoint not in S.
%C A235459 According to the SMAPO database it is conjectured that a(8) = 12246651158320. This database also says that the above value of a(7) is conjectural, but Ziegler lists it as known.
%D A235459 M. M. Deza and M. Laurent, Geometry of Cuts and Metrics, Springer, 1997, pp. 52-54.
%D A235459 G. Kalai and G. Ziegler, ed. "Polytopes: Combinatorics and Computation", Springer, 2000, Chapter 1, pp 1-41.
%H A235459 T. Christof, <a href="http://comopt.ifi.uni-heidelberg.de/software/SMAPO/cut/cut.html">The SMAPO database about the CUT polytope</a>
%H A235459 Michel Deza and Mathieu Dutour Sikirić, <a href="https://doi.org/10.1111/itor.12194">Enumeration of the facets of cut polytopes over some highly symmetric graphs</a>, Intl. Trans. in Op. Res., 23 (2016), 853-860; arXiv:<a href="https://arxiv.org/abs/1501.05407">1501.05407</a> [math.CO], 2015. [Confirms the value of a(7).]
%H A235459 Stefan Forcey, <a href="https://sforcey.github.io/sf34/hedra.htm#CutPolytope">Encyclopedia of Combinatorial Polytope Sequences: Cut Polytope</a>.
%H A235459 G. Ziegler, <a href="https://arxiv.org/abs/math/9909177">Lectures on 0/1 Polytopes</a>, arXiv:math/9909177 [math.CO], 1999, p 22-28.
%e A235459 a(2) corresponds to 0 <= p[1,2] <= p[1,1],p[2,2] and p[1,1] + p[2,2] - p[1,2] <= 1.
%o A235459 (Sage)
%o A235459 def Correlation(n):
%o A235459    if n == 0:
%o A235459       yield (tuple([]),tuple([]))
%o A235459       return
%o A235459    for x,y in Correlation(n-1):
%o A235459       yield (x + (0,),y + (n-1)*(0,))
%o A235459       yield (x + (1,),y + x)
%o A235459 def CorrelationPolytope(n):
%o A235459    return Polyhedron(vertices=[x + y for x,y in Correlation(n)])
%o A235459 def a(n):
%o A235459    return len(CorrelationPolytope(n).Hrepresentation())
%Y A235459 Cf. A053043, A246427.
%K A235459 nonn,hard,more
%O A235459 1,1
%A A235459 _Victor S. Miller_, Jan 10 2014