This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235534 #38 Sep 08 2022 08:46:06 %S A235534 1,3,55,1428,43263,1430715,50067108,1822766520,68328754959, %T A235534 2619631042665,102240109897695,4048514844039120,162250238001816900, %U A235534 6568517413771094628,268225186597703313816,11034966795189838872624,456949965738717944767791 %N A235534 a(n) = binomial(6*n, 2*n) / (4*n + 1). %C A235534 This is the case l=4, k=2 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper. %C A235534 First bisection of A001764. %H A235534 Zhi-Wei Sun, <a href="https://doi.org/10.1017/S1446788712000171">On Divisibility Of Binomial Coefficients</a>, Journal of the Australian Mathematical Society 93 (2012), p. 189-201. %F A235534 a(n) = A047749(4*n-2) for n>0. %F A235534 From _Ilya Gutkovskiy_, Jun 21 2018: (Start) %F A235534 G.f.: 4F3(1/6,1/3,2/3,5/6; 1/2,3/4,5/4; 729*x/16). %F A235534 a(n) ~ 3^(6*n+1/2)/(sqrt(Pi)*2^(4*n+7/2)*n^(3/2)). (End) %t A235534 Table[Binomial[6 n, 2 n]/(4 n + 1), {n, 0, 20}] %o A235534 (Magma) l:=4; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */ %Y A235534 Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), this sequence (l=4, k=2), A235536 (l=6, k=2), A187357 (l=3, k=3), A235535 (l=6, k=3). %K A235534 nonn,easy %O A235534 0,2 %A A235534 _Bruno Berselli_, Jan 12 2014