This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235608 #31 Feb 25 2025 03:53:37 %S A235608 1,2,1,10,5,1,62,31,7,1,430,215,51,10,1,3194,1597,389,87,12,1,24850, %T A235608 12425,3077,740,117,15,1,199910,99955,25035,6305,1076,168,17,1, %U A235608 1649350,824675,208255,54150,9705,1700,208,20,1,13879538,6939769,1763473,469399,87048 %N A235608 Triangle read by rows: a non-Riordan array serving as a counterexample to a conjecture about Riordan arrays. %C A235608 See Barry (2013), Example 3, for precise definition. %C A235608 T(n,1) = T(n,0)/2 for n > 0. - _Philippe Deléham_, Jan 31 2014 %H A235608 Paul Barry, <a href="http://arxiv.org/abs/1312.0583">Embedding structures associated with Riordan arrays and moment matrices</a>, arXiv preprint arXiv:1312.0583 [math.CO], 2013. See Example 3. %F A235608 G.f. for the column k (with leading zero omitted): f(x)^(floor((k+2)/2))*g(x)^(floor((k+1)/2)) with f(x) = (1+x-sqrt(1-10*x+x^2))/(6*x) and g(x) = (1-x-sqrt(1-10*x+x^2))/(4*x). - _Philippe Deléham_, Jan 31 2014 %e A235608 Triangle begins: %e A235608 1; %e A235608 2, 1; %e A235608 10, 5, 1; %e A235608 62, 31, 7, 1; %e A235608 430, 215, 51, 10, 1; %e A235608 3194, 1597, 389, 87, 12, 1; %e A235608 24850, 12425, 3077, 740, 117, 15, 1; %e A235608 199910, 99955, 25035, 6305, 1076, 168, 17, 1; %e A235608 1649350, 824675, 208255, 54150, 9705, 1700, 208, 20, 1; %e A235608 13879538, 6939769, 1763473, 469399, 87048, 16449, 2248, 274, 22, 1; %e A235608 ... - Extended by _Philippe Deléham_, Jan 31 2014 %t A235608 f[x_] := (1+x-Sqrt[1-10*x+x^2])/(6*x); g[x_] := (1-x-Sqrt[1-10*x+x^2])/(4*x); t[n_, k_] := SeriesCoefficient[f[x]^Floor[(k+2)/2]*g[x]^Floor[(k+1)/2], {x, 0, n}]; Table[t[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 31 2014, after _Philippe Deléham_ *) %Y A235608 The leading column is A107841. %Y A235608 Cf. A103210, A107841. %K A235608 nonn,tabl %O A235608 0,2 %A A235608 _N. J. A. Sloane_, Jan 23 2014 %E A235608 More terms from _Philippe Deléham_, Jan 31 2014