This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235622 #15 Jan 16 2022 23:22:33 %S A235622 2,3,5,19,53,89,109,131,257,293,307,347,349,433,523,557,683,739,811, %T A235622 853,881,907,937,941,1061,1097,1117,1201,1427,1621,1693,1733,1747, %U A235622 1861,1873,1889,1907,2141,2267,2341,2467,2677,2699,2803,2861,2917,2953,3163,3253,3307,3433 %N A235622 Primes whose base-8 representation also is the base-7 representation of a prime. %C A235622 This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10. %H A235622 Harvey P. Dale, <a href="/A235622/b235622.txt">Table of n, a(n) for n = 1..1000</a> %H A235622 M. F. Hasler, <a href="https://docs.google.com/document/d/10IM7fcAbB2tqRGuwfGvuEGUzD_IXbgXPDK0tfxN4M3o/pub">Primes whose base c expansion is also the base b expansion of a prime</a> %e A235622 E.g., 19 = 23_8 and 23_7 = 17 are both prime. %t A235622 pb87Q[n_]:=Module[{idn8=IntegerDigits[n,8]},Max[idn8]<7&&PrimeQ[ FromDigits[ idn8,7]]]; Select[Prime[Range[500]],pb87Q] (* _Harvey P. Dale_, Dec 13 2016 *) %o A235622 (PARI) is(p,b=7,c=8)=vecmax(d=digits(p,c))<b&&isprime(vector(#d,i,b^(#d-i))*d~)&&isprime(p) %o A235622 (PARI) forprime(p=1,3e3,is(p,8,7)&&print1(vector(#d=digits(p,7),i,8^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,7,8) %Y A235622 Cf. A235630, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971 ⊂ A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references. %K A235622 nonn,base %O A235622 1,1 %A A235622 _M. F. Hasler_, Jan 13 2014