cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A235627 Primes whose base-7 representation also is the base-5 representation of a prime.

Original entry on oeis.org

2, 3, 7, 17, 23, 31, 53, 71, 73, 79, 101, 109, 113, 127, 151, 157, 197, 199, 359, 401, 409, 449, 463, 521, 541, 557, 743, 863, 1033, 1039, 1103, 1151, 1193, 1229, 1451, 1487, 1499, 1543, 2423, 2521, 2549, 2621, 2753, 2857, 2909, 2957, 3089, 3257, 3313, 3511, 3529, 3593
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			Both 17 = 23_7 and 23_5 = 13 are prime.
		

Crossrefs

Cf. A235635, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • PARI
    is(p,b=5,c=7)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,3e3,is(p,7,5)&&print1(vector(#d=digits(p,5),i,7^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,5,7)

A262839 (5,7)-primes (defined in Comments).

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 23, 31, 41, 43, 53, 71, 73, 79, 97, 101, 109, 113, 127, 137, 151, 157, 181, 191, 193, 197, 199, 233, 239, 251, 263, 277, 281, 311, 317, 337, 349, 359, 379, 401, 409, 431, 433, 449, 461, 463, 503, 521, 541, 557, 613, 617, 631, 643, 647
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2015

Keywords

Comments

Let V = (b(1), b(2), ..., b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k).

Crossrefs

Programs

  • Mathematica
    {b1, b2} = {5, 7};
    u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &];  (* A235635 *)
    v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &];  (* A262839 *)
    w = Intersection[u, v]; (* A262840 *)
    (* Peter J. C. Moses, Sep 27 2015 *)

A262840 {5,7}-primes (defined in Comments).

Original entry on oeis.org

2, 3, 5, 13, 17, 23, 41, 43, 53, 71, 79, 101, 137, 157, 181, 191, 239, 281, 379, 463, 743, 839, 863, 967, 1151, 1171, 1303, 1367, 1663, 1721, 2083, 2251, 2297, 2351, 2621, 2659, 2957, 2999, 3257, 3343, 3373, 3511, 3607, 3767, 3863, 3877, 3907, 4217, 4447
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2015

Keywords

Comments

Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)).

Crossrefs

Programs

  • Mathematica
    {b1, b2} = {5, 7};
    u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &];  (* A235635 *)
    v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &];  (* A262839 *)
    w = Intersection[u, v]; (* A262840 *)
    (* Peter J. C. Moses, Sep 27 2015 *)
Showing 1-3 of 3 results.