cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A235673 Number of (n+1) X (2+1) 0..1 arrays with the difference between each 2 X 2 subblock maximum and minimum lexicographically nondecreasing columnwise and nonincreasing rowwise.

Original entry on oeis.org

58, 380, 2456, 15790, 101398, 650928, 4178316, 26820102, 172154058, 1105028596, 7092994476, 45528746034, 292241404878, 1875848682364, 12040758823136, 77287616186486, 496096276240318, 3184358988382152, 20439867526684676
Offset: 1

Views

Author

R. H. Hardin, Jan 13 2014

Keywords

Examples

			Some solutions for n=5:
..0..0..0....1..1..0....0..1..0....1..1..1....1..0..1....0..0..1....1..1..0
..1..0..1....1..0..0....0..1..1....1..0..0....0..0..1....1..0..1....0..1..1
..0..1..1....1..0..1....0..0..1....1..0..1....0..0..0....0..1..1....1..0..0
..1..0..0....0..1..0....1..1..1....1..1..1....0..0..1....0..0..0....1..1..0
..0..0..1....1..0..1....1..0..1....1..0..1....0..0..0....0..0..1....0..0..1
..1..1..1....0..1..1....1..1..1....1..0..1....0..0..0....0..0..1....1..1..0
		

Crossrefs

Column 2 of A235679.

Formula

Empirical: a(n) = 8*a(n-1) - 9*a(n-2) - 9*a(n-3) + 10*a(n-4) + 3*a(n-5) - 2*a(n-6).
Empirical g.f.: 2*x*(29 - 42*x - 31*x^2 + 42*x^3 + 11*x^4 - 8*x^5) / ((1 - x)*(1 - x - x^2)*(1 - 6*x - 3*x^2 + 2*x^3)). - Colin Barker, Oct 19 2018

A235674 Number of (n+1)X(3+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing columnwise and nonincreasing rowwise.

Original entry on oeis.org

208, 2456, 28584, 330840, 3824528, 44196144, 510685176, 5900818062, 68181837738, 787815537064, 9102909355490, 105180650740834, 1215322331681740, 14042586259073748, 162256730906114932, 1874814669334245592
Offset: 1

Views

Author

R. H. Hardin, Jan 13 2014

Keywords

Comments

Column 3 of A235679

Examples

			Some solutions for n=3
..1..0..1..0....0..1..1..1....1..1..0..1....0..0..1..1....0..1..0..1
..1..0..0..0....0..1..0..1....0..0..1..0....1..0..0..0....1..1..1..0
..0..1..0..1....0..0..1..1....0..1..1..1....1..0..1..1....0..1..0..1
..0..1..1..1....0..0..0..1....1..0..1..0....1..1..0..1....1..0..0..0
		

Formula

Empirical: a(n) = 13*a(n-1) -7*a(n-2) -120*a(n-3) +60*a(n-4) +376*a(n-5) -111*a(n-6) -477*a(n-7) +47*a(n-8) +216*a(n-9) +20*a(n-10) -16*a(n-11)

A235675 Number of (n+1)X(4+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing columnwise and nonincreasing rowwise.

Original entry on oeis.org

742, 15790, 330840, 6894210, 143484144, 2985166430, 62100488254, 1291848133836, 26873571586520, 559034577488572, 11629252189546650, 241916151493365248, 5032432178704803216, 104686575579504167834, 2177730111458692702436
Offset: 1

Views

Author

R. H. Hardin, Jan 13 2014

Keywords

Comments

Column 4 of A235679

Examples

			Some solutions for n=2
..0..1..0..0..0....1..1..1..1..0....1..1..0..0..0....0..1..0..0..0
..1..1..0..1..1....0..0..0..0..0....1..0..0..1..1....0..0..1..1..1
..1..1..0..0..1....0..1..1..1..1....0..0..1..0..0....0..0..0..0..0
		

Formula

Empirical: a(n) = 25*a(n-1) -56*a(n-2) -760*a(n-3) +1870*a(n-4) +9093*a(n-5) -19671*a(n-6) -53908*a(n-7) +96797*a(n-8) +165297*a(n-9) -249510*a(n-10) -263103*a(n-11) +342224*a(n-12) +215121*a(n-13) -241863*a(n-14) -95529*a(n-15) +88208*a(n-16) +23290*a(n-17) -16128*a(n-18) -2854*a(n-19) +1362*a(n-20) +136*a(n-21) -40*a(n-22)

A235676 Number of (n+1)X(5+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing columnwise and nonincreasing rowwise.

Original entry on oeis.org

2644, 101398, 3824528, 143484144, 5376199876, 201368802704, 7541722428052, 282448223982692, 10578025710796398, 396159194076516486, 14836610532891874266, 555647815868404968230, 20809637555870658166622
Offset: 1

Views

Author

R. H. Hardin, Jan 13 2014

Keywords

Comments

Column 5 of A235679

Examples

			Some solutions for n=2
..1..0..1..0..1..0....0..1..1..0..1..1....1..0..0..0..1..0....0..1..0..1..0..1
..0..0..0..0..1..1....0..1..0..0..1..0....0..1..0..1..1..1....0..1..0..0..0..1
..0..0..0..0..1..0....0..0..1..0..1..0....1..0..1..0..1..0....0..0..0..1..0..1
		

Formula

Empirical: a(n) = 41*a(n-1) +24*a(n-2) -6193*a(n-3) +1924*a(n-4) +381751*a(n-5) -34904*a(n-6) -12528996*a(n-7) -2476249*a(n-8) +242251344*a(n-9) +95519778*a(n-10) -2921868601*a(n-11) -1424979978*a(n-12) +22890929984*a(n-13) +11443851546*a(n-14) -120327943002*a(n-15) -54753628073*a(n-16) +436238929060*a(n-17) +163082200640*a(n-18) -1115185281644*a(n-19) -305053074990*a(n-20) +2042426147637*a(n-21) +343600635845*a(n-22) -2705840889861*a(n-23) -185737078719*a(n-24) +2604257684139*a(n-25) -47132369846*a(n-26) -1821805821961*a(n-27) +160826214615*a(n-28) +924348718445*a(n-29) -130102603524*a(n-30) -338651235030*a(n-31) +59527885849*a(n-32) +88904498941*a(n-33) -17255577437*a(n-34) -16505197234*a(n-35) +3241956946*a(n-36) +2117356442*a(n-37) -388930038*a(n-38) -180086494*a(n-39) +28441700*a(n-40) +9406424*a(n-41) -1167836*a(n-42) -259016*a(n-43) +24152*a(n-44) +2624*a(n-45) -224*a(n-46)

A235677 Number of (n+1)X(6+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing columnwise and nonincreasing rowwise.

Original entry on oeis.org

9418, 650928, 44196144, 2985166430, 201368802704, 13578805464958, 915571832243030, 61732408470815696, 4162281818292994236, 280639690768870439812, 18921978290641266201918, 1275803956877960415549616
Offset: 1

Views

Author

R. H. Hardin, Jan 13 2014

Keywords

Comments

Column 6 of A235679

Examples

			Some solutions for n=1
..0..1..0..0..1..0..1....0..0..0..1..0..1..0....1..1..1..1..0..0..1
..0..1..1..0..0..0..0....0..0..0..0..0..0..0....1..1..1..0..1..1..1
		

Formula

Empirical recurrence of order 87 (see link above)

A235678 Number of (n+1)X(7+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing columnwise and nonincreasing rowwise.

Original entry on oeis.org

33544, 4178316, 510685176, 62100488254, 7541722428052, 915571832243030, 111141360154581108, 13491148978500627866, 1637644495947011565142, 198787774684087795661506, 24130123777752397380536568
Offset: 1

Views

Author

R. H. Hardin, Jan 13 2014

Keywords

Comments

Column 7 of A235679

Examples

			Some solutions for n=1
..1..0..1..0..0..1..1..0....0..0..0..1..1..1..0..0....1..0..1..1..0..1..1..0
..0..0..0..0..1..0..1..1....1..1..0..1..0..1..1..1....1..0..0..0..0..0..0..0
		

A235672 Number of (n+1)X(n+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing columnwise and nonincreasing rowwise.

Original entry on oeis.org

16, 380, 28584, 6894210, 5376199876, 13578805464958, 111141360154581108, 2948319928633417670416, 253497281472306754538416318, 70644048705639953560633398930712
Offset: 1

Views

Author

R. H. Hardin, Jan 13 2014

Keywords

Comments

Diagonal of A235679

Examples

			Some solutions for n=3
..1..1..0..1....1..0..0..1....0..0..1..0....0..0..0..1....0..1..1..0
..0..0..0..0....0..0..1..1....1..0..1..0....1..0..1..0....0..0..1..0
..1..0..1..0....1..0..1..0....1..0..0..0....1..1..0..1....0..1..0..1
..1..0..0..0....0..1..0..0....1..1..1..0....0..0..1..0....0..1..1..0
		
Showing 1-7 of 7 results.