cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235689 Semiprimes which remain semiprimes when the leftmost and rightmost digits are removed.

This page as a plain text file.
%I A235689 #16 Nov 22 2018 11:20:36
%S A235689 141,142,143,145,146,161,166,169,194,247,249,262,265,267,291,295,298,
%T A235689 299,341,346,361,362,365,391,393,394,395,398,445,446,447,466,469,493,
%U A235689 497,542,543,545,562,565,566,591,597,649,662,667,669,694,695,697,698,699
%N A235689 Semiprimes which remain semiprimes when the leftmost and rightmost digits are removed.
%e A235689 169 = 13^2 is in the sequence because 6 = 2*3.
%t A235689 Select[Range[100,700],PrimeOmega[#]==PrimeOmega[FromDigits[ Rest[ Most[ IntegerDigits[ #]]]]] ==2&] (* _Harvey P. Dale_, Nov 22 2018 *)
%o A235689 (PARI)
%o A235689 list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, listput(v, t*q))); vecsort(Vec(v)) \\ From A001358
%o A235689 delleft(a) = my(b, c); b=#Str(a); c=a\(10^(b-1)); a-c*(10^(b-1))
%o A235689 issemiprime(n) = n>0 && bigomega(n)==2
%o A235689 t=list(700); for(n=1, #t, if(issemiprime(delleft(t[n]\10)), print1(t[n],", ")))
%Y A235689 Cf. A235687, A235688.
%Y A235689 Cf. A227919, A227916, A069686.
%K A235689 nonn,base
%O A235689 1,1
%A A235689 _Colin Barker_, Jan 14 2014