cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235709 Least prime p < prime(n) with 2^p - 1 a quadratic residue modulo prime(n), or 0 if such a number does not exist.

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 7, 3, 2, 3, 3, 2, 5, 5, 2, 3, 2, 2, 7, 2, 2, 5, 2, 23, 2, 5, 3, 2, 2, 3, 5, 2, 3, 3, 3, 5, 2, 11, 2, 5, 2, 2, 2, 2, 3, 3, 11, 3, 2, 2, 3, 2, 2, 2, 5, 2, 7, 3, 2, 3, 3, 5, 3, 2, 2, 3, 5, 2, 2, 2, 7, 2, 3, 2, 7, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 11, 5, 2, 2, 5, 2, 5, 2, 7, 5, 3, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 20 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 4.
We have verified this for all n = 5, ..., 10^8.
Note that the conjecture in A234972 implies that for any prime p > 3 there is a prime q < p with 2^q - 1 a quadratic nonresidue modulo p.

Examples

			a(8) = 3 since 2^3 - 1 = 7 is a quadratic residue modulo prime(8) = 19, but 2^2 - 1 = 3 is not.
		

Crossrefs

Programs

  • Mathematica
    Do[Do[If[JacobiSymbol[2^(Prime[k])-1,Prime[n]]==1,Print[n," ",Prime[k]];Goto[aa]],{k,1,n-1}];Print[n," ",0];Label[aa];Continue,{n,1,100}]