A235709 Least prime p < prime(n) with 2^p - 1 a quadratic residue modulo prime(n), or 0 if such a number does not exist.
0, 0, 0, 0, 2, 2, 7, 3, 2, 3, 3, 2, 5, 5, 2, 3, 2, 2, 7, 2, 2, 5, 2, 23, 2, 5, 3, 2, 2, 3, 5, 2, 3, 3, 3, 5, 2, 11, 2, 5, 2, 2, 2, 2, 3, 3, 11, 3, 2, 2, 3, 2, 2, 2, 5, 2, 7, 3, 2, 3, 3, 5, 3, 2, 2, 3, 5, 2, 2, 2, 7, 2, 3, 2, 7, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 11, 5, 2, 2, 5, 2, 5, 2, 7, 5, 3, 2
Offset: 1
Keywords
Examples
a(8) = 3 since 2^3 - 1 = 7 is a quadratic residue modulo prime(8) = 19, but 2^2 - 1 = 3 is not.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Do[Do[If[JacobiSymbol[2^(Prime[k])-1,Prime[n]]==1,Print[n," ",Prime[k]];Goto[aa]],{k,1,n-1}];Print[n," ",0];Label[aa];Continue,{n,1,100}]
Comments