This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235712 #16 Aug 05 2019 02:48:29 %S A235712 0,2,0,2,7,2,2,5,2,11,11,2,7,2,2,2,5,5,2,5,2,5,2,5,2,7,2,2,5,2,2,13,2, %T A235712 5,13,5,2,2,2,2,5,11,5,2,2,7,5,2,2,23,2,7,5,5,2,2,5,5,2,7,2,2,2,5,2,2, %U A235712 7,2,2,5,2,7,2,2,11,2,5,2,5,5,5,7,7,2,5,2,5,2,7,2,2,7,2,13,7,2,5,5,2,5 %N A235712 Least prime p < prime(n) with 2^p + 1 a quadratic nonresidue modulo prime(n), or 0 if such a prime p does not exist. %C A235712 Conjecture: a(n) > 0 for all n > 3. %C A235712 Note that 2^3 + 1 = 3^2 is a quadratic residue modulo any prime p > 3. Also, there is no prime p < prime(316) = 2089 with 2^p + 1 a primitive root modulo 2089. %C A235712 See also A234972 and A235709 for similar conjectures. %H A235712 Zhi-Wei Sun, <a href="/A235712/b235712.txt">Table of n, a(n) for n = 1..10000</a> %H A235712 Z.-W. Sun, <a href="http://arxiv.org/abs/1405.0290">New observations on primitive roots modulo primes</a>, arXiv preprint arXiv:1405.0290 [math.NT], 2014. %e A235712 a(4) = 2 since 2^2 + 1 = 5 is a quadratic nonresidue modulo prime(4) = 7. %t A235712 Do[Do[If[JacobiSymbol[2^(Prime[k])+1,Prime[n]]==-1,Print[n," ",Prime[k]];Goto[aa]],{k,1,n-1}]; %t A235712 Print[n," ",0];Label[aa];Continue,{n,1,100}] %Y A235712 Cf. A000040, A098640, A234972, A235709. %K A235712 nonn %O A235712 1,2 %A A235712 _Zhi-Wei Sun_, Apr 20 2014