A235726 Lexicographically earliest sequence of positive integers such that a(nm) != a(n + m) for all positive integers n and m such that nm != n + m.
1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1
Offset: 1
Keywords
Examples
For n = 8, a(8) != 1 because a(1 + 7) != a(1 * 7); a(8) != 2 because a(2 * 4) != a(2 + 4); a(8) = 3.
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A072670.
Programs
-
Haskell
a 1 = 1 a 4 = 2 a n = head $ filter (`notElem` disallowedValues) [1..] where disallowedValues = map a $ (n-1) : filter (
n `mod` d == 0) [1..n] divisorSum d = d + n `div` d -
Maple
N:= 100: # to get a(1) to a(N) A[1]:= 1: A[2]:= 2: A[3]:= 1: A[4]:= 2: for n from 5 to N do if n::odd then A[n]:= 1 else A[n]:= min({$2..n} minus {seq(A[q+n/q], q=numtheory:-divisors(n) minus {1,n})}); fi od: seq(A[i],i=1..N); # Robert Israel, Apr 19 2017
Comments