cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235757 Ruler function associated with the set of permutations generated by cyclic shift in cyclic order, array read by rows.

This page as a plain text file.
%I A235757 #15 Jan 20 2014 10:58:07
%S A235757 1,1,1,1,2,1,1,2,1,1,1,2,1,1,1,2,1,1,1,3,1,1,1,2,1,1,1,2,1,1,1,3,1,1,
%T A235757 1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,3,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,
%U A235757 1,1,1,3,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,4
%N A235757 Ruler function associated with the set of permutations generated by cyclic shift in cyclic order, array read by rows.
%C A235757 Variant of A235748.
%C A235757 The set of permutations S_n = {p_0, ..., p_{n!-1}} is ordered according to generation by cyclic shift. The order is considered cyclic, i.e., p_0 is next to p_{n!-1}.
%C A235757 Row n, denoted F(n), has n! (A000142) entries.
%C A235757 F(2) = 1 1
%C A235757 F(3) = 1 1 2 1 1 2
%C A235757 F(4) = 1 1 1 2 1 1 1 2 1 1 1 3 1 1 1 2 1 1 1 2 1 1 1 3
%C A235757 F(5) = 111121111211112111131111211112111121111311112111121111211114...4
%C A235757 The term of index k (k = 0, ..., n!-1) of row n is the number of symbols that have to be erased to the left of a permutation p_k so that the last symbols of the permutation match the first symbols of the next permutation p_{k+1}. The terms of F(n) sum to 1! + 2! + ... + n! - 1.
%D A235757 D. E. Knuth, The Art of Computer Programming, Vol. 4, Combinatorial Algorithms, 7.2.1.2, Addison-Wesley, 2005.
%H A235757 S. Legendre and P. Paclet, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Legendre/legendre5.html">On the permutations generated by cyclic shift</a>, J. Integer Seqs., Vol. 14, article 11.3.2, 2011.
%H A235757 F. Ruskey and A. Williams, <a href="http://arxiv.org/abs/0710.1842">An explicit universal cycle for the (n-1)-permutations of an n-set</a>, ACM Trans. Algorithms, Vol. 6(3), article 45, 12 pages, 2010.
%F A235757 F(n) := if n = 2 then 11 else
%F A235757 (a) Set F'(n-1)  equal to F(n-1) with all entries incremented by 1;
%F A235757 (b) Insert a run of n-1 ones between all entries of F'(n-1) and at the beginning.
%F A235757 Sequence a = F(2)F(3)...
%e A235757 S_2 = {12,21}.
%e A235757 S_3 = {123,231,312,213,132,321}, generated by cyclic shift from S_2.
%e A235757 The ruler sequence is F(6) = 1 1 2 1 1 2. For example, 2 terms need to be erased to the left of p_6 = 321 to match the first symbols of p_0 = 123.
%t A235757 a[nmax_] := Module[{n,b={},w,f,g,i,k},
%t A235757 Do[w = {};f = n!-1;Do[w = Append[w,1],{i,1,f}];
%t A235757    g = 1;
%t A235757    Do[g = g*k;
%t A235757       Do[If[Mod[i,g] == 0,w[[i]] = w[[i]]+1],{i,1,f}],
%t A235757       {k,n,2,-1}];
%t A235757    w = Append[w,n-1];
%t A235757    b = Join[b,w],
%t A235757    {n,2,nmax}];
%t A235757 b]
%t A235757 (* or: *) row[2] = {1, 1}; row[n_] := row[n] = Riffle[Table[Array[1&, n-1], {Length[row[n-1]]}], row[n-1]+1] // Flatten; row /@ Range[2, 5] // Flatten (* _Jean-François Alcover_, Jan 16 2014 *)
%K A235757 nonn,tabf
%O A235757 2,5
%A A235757 _Stéphane Legendre_, Jan 15 2014