This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235776 #10 Oct 28 2024 17:20:08 %S A235776 1,2,42,2000,170660,22741992,4344779208,1123066676160,376718037181200, %T A235776 158895919895100960,82222168141278271392,51172838316787466103552, %U A235776 37687233953299944682503744,32399590493755848692815785600,32140659218911596667452247171200 %N A235776 E.g.f.: exp( Sum_{n>=1} x^(2*n) * Sum_{k=1..n} 1/k^2 ). %H A235776 Vaclav Kotesovec, <a href="/A235776/b235776.txt">Table of n, a(n) for n = 0..220</a> %e A235776 E.g.f.: A(x) = 1 + 2*x^2/2! + 42*x^4/4! + 2000*x^6/6! + 170660*x^8/8! +... %e A235776 such that %e A235776 log(A(x)) = x^2 + (1+1/4)*x^4 + (1+1/4+1/9)*x^6 + (1+1/4+1/9+1/16)*x^8 + (1+1/4+1/9+1/16+1/25)*x^10 + (1+1/4+1/9+1/16+1/25+1/36)*x^12 +... %e A235776 Explicitly, %e A235776 log(A(x)) = x^2 + 5/4*x^4 + 49/36*x^6 + 205/144*x^8 + 5269/3600*x^10 + 5369/3600*x^12 + 266681/176400*x^14 +...+ [Sum_{k=1..n} 1/k^2]*x^(2*n) +... %t A235776 nmax = 20; CoefficientList[Series[Exp[PolyLog[2,x]/(1-x)], {x, 0, nmax}], x] * (2*Range[0, nmax])! (* _Vaclav Kotesovec_, Oct 28 2024 *) %o A235776 (PARI) {a(n)=local(A=1); A=exp(sum(m=1, n\2+1, sum(k=1, m, 1/k^2)*x^(2*m))+x*O(x^n)); n!*polcoeff(A, n)} %o A235776 for(n=0, 20, print1(a(2*n), ", ")) %Y A235776 Cf. A087761, A235385. %K A235776 nonn %O A235776 0,2 %A A235776 _Paul D. Hanna_, Jan 15 2014