cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235799 a(n) = n^2 - sigma(n).

This page as a plain text file.
%I A235799 #57 Sep 08 2022 08:46:06
%S A235799 0,1,5,9,19,24,41,49,68,82,109,116,155,172,201,225,271,285,341,358,
%T A235799 409,448,505,516,594,634,689,728,811,828,929,961,1041,1102,1177,1205,
%U A235799 1331,1384,1465,1510,1639,1668,1805,1852,1947,2044,2161,2180,2344,2407
%N A235799 a(n) = n^2 - sigma(n).
%C A235799 From _Omar E. Pol_, Apr 11 2021: (Start)
%C A235799 If n is prime (A000040) then a(n) = n^2 - n - 1.
%C A235799 If n is a power of 2 (A000079) then a(n) = (n-1)^2.
%C A235799 If n is a perfect number (A000396) then a(n) = (n-1)^2 - 1, assuming there are no odd perfect numbers.
%C A235799 In order to construct the diagram of the symmetric representation of a(n) we use the following rules:
%C A235799 At stage 1 in the first quadrant of the square grid we draw the symmetric representation of sigma(n) using the two Dyck paths described in the rows n and n-1 of A237593. The area of the region that is below the symmetric representation of sigma(n) equals A024916(n-1).
%C A235799 At stage 2 we draw a pair of orthogonal line segments (if it's necessary) such that in the drawing appears totally formed a square n X n. The area of the region that is above the symmetric representation of sigma(n) equals A004125(n).
%C A235799 At stage 3 we turn OFF the cells of the symmetric representation of sigma(n). Then we turn ON the rest of the cells that are in the square n X n. The result is that the ON cell form the diagram of the symmetric representation of a(n). See the Example section. (End)
%H A235799 Harvey P. Dale, <a href="/A235799/b235799.txt">Table of n, a(n) for n = 1..1000</a>
%F A235799 a(n) = A000290(n) - A000203(n).
%F A235799 a(n) = A024916(n-1) + A004125(n), n > 1.
%F A235799 G.f.: x*(1 + x)/(1 - x)^3 - Sum_{k>=1} x^k/(1 - x^k)^2. - _Ilya Gutkovskiy_, Mar 17 2017
%F A235799 From _Omar E. Pol_, Apr 10 2021: (Start)
%F A235799 a(n) = A024816(n) + A000217(n-1).
%F A235799 a(n) = A067436(n) + A153485(n) + A244048(n). (End)
%e A235799 From _Omar E. Pol, Apr 04 2021: (Start)
%e A235799 Illustration of initial terms in the first quadrant for n = 1..6:
%e A235799 .
%e A235799 .                                                             y|        _ _
%e A235799 .                                              y|      _ _     |_ _ _  |_  |
%e A235799 .                                 y|      _     |_ _ _|   |    |     |   |_|
%e A235799 .                      y|    _     |_ _  |_|    |        _|    |     |_ _
%e A235799 .             y|        |_ _|_|    |   |_       |       |      |         |
%e A235799 .      y|      |_       |   |      |     |      |       |      |         |
%e A235799 .       |_ _   |_|_ _   |_ _|_ _   |_ _ _|_ _   |_ _ _ _|_ _   |_ _ _ _ _|_ _
%e A235799 .          x        x          x            x              x                x
%e A235799 .
%e A235799 n:        1       2         3           4             5               6
%e A235799 a(n):     0       1         5           9            19              24
%e A235799 .
%e A235799 Illustration of initial terms in the first quadrant for n = 7..9:
%e A235799 .                                                y|          _ _ _ _
%e A235799 .                          y|          _ _ _      |_ _ _ _ _|       |
%e A235799 .      y|        _ _ _      |_ _ _ _  |     |     |          _ _    |
%e A235799 .       |_ _ _ _|     |     |       | |_    |     |         |_  |   |
%e A235799 .       |             |     |       |_  |_ _|     |           |_|  _|
%e A235799 .       |            _|     |         |_ _        |               |
%e A235799 .       |           |       |             |       |               |
%e A235799 .       |           |       |             |       |               |
%e A235799 .       |           |       |             |       |               |
%e A235799 .       |_ _ _ _ _ _|_ _    |_ _ _ _ _ _ _|_ _    |_ _ _ _ _ _ _ _|_ _
%e A235799 .                      x                     x                       x
%e A235799 .
%e A235799 n:              7                    8                      9
%e A235799 a(n):          41                   49                     68
%e A235799 .
%e A235799 For n = 9 the figures 1, 2 and 3 below show respectively the three stages described in the Comments section as follows:
%e A235799 .
%e A235799 .   y|_ _ _ _ _ 5            y|_ _ _ _ _ _ _ _ _      y|          _ _ _ _
%e A235799 .    |_ _ _ _ _|              |_ _ _ _ _|       |      |_ _ _ _ _|       |
%e A235799 .    |         |_ _ 3         |         |_ _ R  |      |          _ _    |
%e A235799 .    |         |_  |          |         |_  |   |      |         |_  |   |
%e A235799 .    |           |_|_ _ 5     |           |_|_ _|      |           |_|  _|
%e A235799 .    |               | |      |               | |      |               |
%e A235799 .    |      Q        | |      |       Q       | |      |               |
%e A235799 .    |               | |      |               | |      |               |
%e A235799 .    |               | |      |               | |      |               |
%e A235799 .    |_ _ _ _ _ _ _ _|_|_     |_ _ _ _ _ _ _ _|_|_     |_ _ _ _ _ _ _ _|_ _
%e A235799 .                       x                        x                        x
%e A235799 .         Figure 1.                Figure 2.                Figure 3.
%e A235799 .         Symmetric                Symmetric                Symmetric
%e A235799 .       representation           representation           representation
%e A235799 .         of sigma(9)              of sigma(9)             of a(9) = 68
%e A235799 .       A000203(9) = 13          A000203(9) = 13
%e A235799 .           and of                   and of
%e A235799 .     Q = A024916(8) = 56      R = A004125(9) = 12
%e A235799 .                              Q = A024916(8) = 56
%e A235799 .
%e A235799 Note that the symmetric representation of a(9) contains a hole formed by three cells because these three cells were the central part of the symmetric representation of sigma(9). (End)
%t A235799 Table[n^2-DivisorSigma[1,n],{n,50}] (* _Harvey P. Dale_, Sep 02 2016 *)
%o A235799 (PARI) vector(50, n, n^2 - sigma(n)) \\ _G. C. Greubel_, Oct 31 2018
%o A235799 (Magma) [n^2 - DivisorSigma(1,n): n in [1..50]]; // _G. C. Greubel_, Oct 31 2018
%Y A235799 Cf. A000040, A000079, A000203, A000217, A000290, A000396, A004125, A024816, A024916, A067436, A120444, A153485, A196020, A236104, A236112, A237593, A244048, A342344.
%K A235799 nonn
%O A235799 1,3
%A A235799 _Omar E. Pol_, Jan 24 2014