cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235803 Rectangular array read by upward antidiagonals: A(n,k) = 1 + sqrt(k)*((1+sqrt(k))^n - (1-sqrt(k))^n)/2, n,k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 9, 11, 7, 5, 1, 1, 17, 25, 19, 9, 6, 1, 1, 33, 59, 49, 29, 11, 7, 1, 1, 65, 141, 133, 81, 41, 13, 8, 1, 1, 129, 339, 361, 245, 121, 55, 15, 9, 1, 1, 257, 817, 985, 729, 401, 169, 71, 17, 10, 1
Offset: 0

Views

Author

L. Edson Jeffery, Jan 15 2014

Keywords

Examples

			Array begins:
1,   1,    1,    1,     1,     1,     1,      1,      1,      1, ...
1,   2,    3,    4,     5,     6,     7,      8,      9,     10, ...
1,   3,    5,    7,     9,    11,    13,     15,     17,     19, ...
1,   5,   11,   19,    29,    41,    55,     71,     89,    109, ...
1,   9,   25,   49,    81,   121,   169,    225,    289,    361, ...
1,  17,   59,  133,   245,   401,   607,    869,   1193,   1585, ...
1,  33,  141,  361,   729,  1281,  2053,   3081,   4401,   6049, ...
1,  65,  339,  985,  2189,  4161,  7135,  11369,  17145,  24769, ...
1, 129,  817, 2689,  6561, 13441, 24529,  41217,  65089,  97921, ...
1, 257, 1971, 7345, 19685, 43521, 84727, 150641, 250185, 393985, ...
As a triangle:
1;
1,  1;
1,  2,  1;
1,  3,  3,  1;
1,  5,  5,  4,  1;
1,  9, 11,  7,  5,  1;
1, 17, 25, 19,  9,  6, 1;
1, 33, 59, 49, 29, 11, 7, 1; ...
		

Crossrefs

Cf. A094373 (column k=1)

Formula

A(0,k) = 1, A(n,k) = 1 + k*(sum_{j=0..floor((n-1)/2)} A034867(n,j)*k^j), n>0.