This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235861 #30 Feb 11 2018 11:14:46 %S A235861 2174,1,2,1,5,2,25,3,1,1,1,1,1,1,15,1,2,16,1,2,1,1,8,6,1,21,1,1,3,1,1, %T A235861 1,2,2,6,1,1,5,1,17,1,1,47,3,1,1,6,1,1,3,47,1,1,17,1,5,1,1,6,2,2,1,1, %U A235861 1,3,1,1,21,1,6,8,1,1,2,1,16,2,1,15,1,1,1,1,1,1,3,25,2,5,1,2,1,4348 %N A235861 Regular continued fraction expansion of square root of 4729494. %C A235861 This continued fraction is needed to solve completely Archimedes' cattle problem. %C A235861 See Mathematica program in A096151. - _Robert G. Wilson v_, Dec 06 2014 %H A235861 C. Elsner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Elsner/elsner15.html">On Error Sums for Square Roots of Positive Integers with Applications to Lucas and Pell Numbers</a>, J. Int. Seq. 17 (2014) # 14.4.4 %H A235861 I. Vardi, <a href="http://www.jstor.org/stable/2589706">Archimedes' cattle problem</a>, Am. Math. Monthly 105 (1998), pp. 305-319. %F A235861 a(n+92) = a(n) for n>0. %p A235861 cfrac(sqrt(4729494),500,quotients); %t A235861 ContinuedFraction@ Sqrt@ 4729494 // Flatten (* _Robert G. Wilson v_, Dec 06 2014 *) %o A235861 (PARI) default(realprecision, 100); contfrac(sqrt(4729494)) \\ _Michel Marcus_, Mar 12 2015 %Y A235861 Cf. A096151. %K A235861 nonn,cofr %O A235861 0,1 %A A235861 _Carsten Elsner_, Jan 16 2014