A235864 G-Lehmer numbers: Composite numbers k such that A060968(k) divides A201629(k).
15, 143, 255, 385, 3599, 5183, 11663, 32399, 34561, 36863, 51983, 57599, 65535, 97343, 121103, 147455, 176399, 186623, 195841, 359999, 435599, 685583, 1034881, 1040399, 1065023, 1192463, 1327103, 1742399, 2039183, 2108303, 2214143, 2585663, 2624399, 2782223, 3196943
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- José María Grau, Antonio M. Oller-Marcén, Manuel Rodríguez, and Daniel Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, Czechoslovak Mathematical Journal, Vol. 65 (2015), pp. 969-982; arXiv preprint, arXiv:1401.4708 [math.NT], 2014.
Programs
-
Mathematica
fa=FactorInteger; phi[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; Select[Range[1000], IntegerQ[FU[#]/phi[#]] && PrimeQ[#] == False &]
Extensions
a(29)-a(35) from Amiram Eldar, Nov 24 2023