This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235866 #23 Aug 21 2021 16:34:50 %S A235866 1,3,5,7,11,13,15,17,19,21,23,29,31,35,37,41,43,47,51,53,55,57,59,61, %T A235866 65,67,71,73,77,79,83,85,87,89,91,93,97,101,103,105,107,109,113,115, %U A235866 119,123,127,129,131,133,137,139,143,145,149,151,155,157,159,161 %N A235866 G-cyclic numbers: numbers n such that gcd(n,A060968(n))=1. %C A235866 From _Robert Israel_, May 01 2020: (Start) %C A235866 All terms are odd and squarefree. %C A235866 Contains all odd primes. %C A235866 If n is a member, then so are all divisors of n. %C A235866 (End) %H A235866 Robert Israel, <a href="/A235866/b235866.txt">Table of n, a(n) for n = 1..10000</a> %H A235866 Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, <a href="http://arxiv.org/abs/1401.4708">Fermat test with Gaussian base and Gaussian pseudoprimes</a>, arXiv:1401.4708 [math.NT], 2014. %p A235866 g:= proc(p,e) if p=2 or e > 1 then 0 %p A235866 elif p mod 4 = 1 then p-1 else p+1 fi %p A235866 end proc: %p A235866 h:= proc(n) mul(g(t[1],t[2]),t=ifactors(n)[2]) end proc: %p A235866 select(n -> igcd(n,h(n))=1, [seq(i,i=1..2000,2)]); # _Robert Israel_, May 01 2020 %t A235866 fa=FactorInteger; phi[1]=1;phi[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; Select[Range[1000], GCD[phi[#], #] == 1 &] %o A235866 (PARI) genit(maxx)={arr=List(); for(ptr=1, maxx, if(gcd(ptr,A060968(ptr))==1, listput(arr,ptr))); arr} %o A235866 \\******** following code taken from A060968 %o A235866 A060968(n)={my(f=factor(n)[,1]); q=n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1,1-1/f[i],1+1/f[i]))*if(n%4,1,2);return(q);} \\ _Bill McEachen_, Jul 16 2021 %Y A235866 Cf. A060968, A003277. %K A235866 nonn %O A235866 1,2 %A A235866 _José María Grau Ribas_, Jan 19 2014