This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235867 #31 Aug 21 2021 16:35:29 %S A235867 77,119,133,187,217,253,287,301,319,323,341,391,399,403,407,413,437, %T A235867 469,517,551,553,559,583,589,623,651,667,707,713,731,737,749,779,781, %U A235867 803,817,851,869,871,889,893,899,903,913,917,935,943,959,969,1001,1003 %N A235867 G-cyclic numbers k such that A060968(k)^A060968(k) <> 1 (mod k) and A235863(k)^A235863(k) <> 1 (mod k). %C A235867 For G-cyclic numbers see A235866. %C A235867 All terms are composite. - _Bill McEachen_, Jul 16 2021 %H A235867 Bill McEachen, <a href="/A235867/b235867.txt">Table of n, a(n) for n = 1..10000</a> %H A235867 Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, <a href="http://arxiv.org/abs/1401.4708">Fermat test with Gaussian base and Gaussian pseudoprimes</a>, arXiv:1401.4708 [math.NT], 2014. %o A235867 (PARI) genit(maxx)={arr2=List();arr=List();for(ptr=1,maxx,if( gcd(ptr,A060968(ptr))==1,listput(arr,ptr)));for(ptr=2,#arr,n=arr[ptr];a=A060968(n)^A060968(n);b=A235863(n)^A235863(n);if(a%n!=1&&b%n!=1,listput(arr2,n)));} %o A235867 A060968(n)={my(f=factor(n)[,1]);q=n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1,1-1/f[i],1+1/f[i]))*if(n%4,1,2);return(q);} \\taken from that sequence %o A235867 A235863(n)={my(f=factor(n));q=lcm(vector(#f~,i,my([p,e]=f[i,]);if(p==2,2^max(e-2,min(e,2)),p^(e-1)*if(p%4==1,p-1,p+1))));return (q);} \\taken from that sequence %o A235867 \\ _Bill McEachen_, Jul 16 2021 %Y A235867 Cf. A235866, A060968, A235863. %K A235867 nonn %O A235867 1,1 %A A235867 _José María Grau Ribas_, Feb 22 2014