This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235913 #15 Jan 03 2025 18:39:12 %S A235913 1,3,11,15,13,9,5,21,33,59,71,49,47,35,15,13,43,73,109,123,117,109, %T A235913 167,141,113,77,43,5,51,95,145,201,263,281,397,413,317,333,269,239, %U A235913 183,121,63,11,81,147,219,307,379,471,567,623,517,569,683,503,545,473,395,311 %N A235913 a(n) is the Manhattan distance between n^3 and (n+1)^3 in a square spiral of positive integers with 1 at the center. %C A235913 Spiral begins: %C A235913 . %C A235913 49 26--27--28--29--30--31 %C A235913 | | | %C A235913 48 25 10--11--12--13 32 %C A235913 | | | | | %C A235913 47 24 9 2---3 14 33 %C A235913 | | | | | | | %C A235913 46 23 8 1 4 15 34 %C A235913 | | | | | | %C A235913 45 22 7---6---5 16 35 %C A235913 | | | | %C A235913 44 21--20--19--18--17 36 %C A235913 | | %C A235913 43--42--41--40--39--38--37 %e A235913 Manhattan distance between 2^3=8 and 3^3=27 is 3 in a square spiral, so a(2)=3. %o A235913 (Python) %o A235913 import math %o A235913 def get_x_y(n): %o A235913 sr = int(math.sqrt(n-1)) # Ok for small n's %o A235913 sr = sr-1+(sr&1) %o A235913 rm = n-sr*sr %o A235913 d = (sr+1)//2 %o A235913 if rm<=sr+1: %o A235913 return -d+rm, d %o A235913 if rm<=sr*2+2: %o A235913 return d, d-(rm-(sr+1)) %o A235913 if rm<=sr*3+3: %o A235913 return d-(rm-(sr*2+2)), -d %o A235913 return -d, -d+rm-(sr*3+3) %o A235913 for n in range(1, 77): %o A235913 x0, y0 = get_x_y(n**3) %o A235913 x1, y1 = get_x_y((n+1)**3) %o A235913 print(abs(x1-x0)+abs(y1-y0), end=', ') %Y A235913 Cf. A214526, A232113, A232114, A232115. %K A235913 nonn %O A235913 1,2 %A A235913 _Alex Ratushnyak_, Jan 16 2014