A235914 Odd primes p = 2*m + 1 with m*(m-1) - prime(m) and m*(m+1) - prime(m) both prime.
13, 17, 23, 29, 31, 43, 73, 89, 181, 229, 313, 367, 379, 557, 631, 683, 1021, 1069, 1093, 1151, 1303, 1459, 1471, 1663, 1733, 1831, 1871, 2411, 2473, 2791, 2843, 2887, 3673, 3691, 3793, 3797, 3863, 4001, 4139, 4261, 5261, 5431, 6091, 6301, 6661, 6737, 6883, 7489, 7523, 7873
Offset: 1
Keywords
Examples
a(1) = 13 since none of 1*2 - prime(1) = 0, 1*2 - prime(2) = -1, 2*3 - prime(3) = 1 and 2*4 + 1 = 9 = 4*5 - prime(5) is prime, but 2*6 + 1 = 13, 5*6 - prime(6) = 30 - 13 = 17 and 6*7 - prime(6) = 42 - 13 = 29 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
PQ[n_]:=n>0&&PrimeQ[n] q[n_]:=PQ[n(n-1)-Prime[n]]&&PQ[n(n+1)-Prime[n]] n=0;Do[If[q[(Prime[k]-1)/2],n=n+1;Print[n," ",Prime[k]]],{k,2,1000}]
Comments