A235917 a(n) = |{0 < k < n - 2: p = prime(k) + phi(n-k)/2, p^2 - 1 - prime(p) and (p^2 - 1)/2 - prime(p) are all prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 0, 3, 1, 4, 2, 4, 3, 1, 2, 2, 3, 3, 1, 2, 2, 1, 1, 2, 4, 1, 5, 2, 2, 3, 2, 6, 2, 1, 3, 3, 2, 4, 5, 4, 2, 5, 3, 4, 2, 3, 4, 4, 3, 3, 2, 1, 4, 3, 2, 3, 4, 5, 7, 3, 5, 1, 6, 1, 7, 3, 6, 5, 3, 5, 2, 3, 4, 5, 3, 8, 6, 4, 2, 6, 4, 8, 3, 7, 5, 6, 6, 4, 3, 5, 6, 4, 3
Offset: 1
Keywords
Examples
a(10) = 1 since prime(5) + phi(5)/2 = 11 + 2 = 13, 13^2 - 1 - prime(13) = 168 - 41 = 127 and (13^2 - 1)/2 - prime(13) = 84 - 41 = 43 are all prime. a(71) = 1 since prime(19) + phi(52)/2 = 67 + 12 = 79, 79^2 - 1 - prime(79) = 6240 - 401 = 5839 and (79^2 - 1)/2 - prime(79) = 3120 - 401 = 2719 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
PQ[n_]:=n>0&&PrimeQ[n] p[n_]:=PrimeQ[n]&&PQ[n^2-1-Prime[n]]&&PQ[(n^2-1)/2-Prime[n]] f[n_,k_]:=Prime[k]+EulerPhi[n-k]/2 a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}] Table[a[n],{n,1,100}]
Comments