A235919 a(n) = |{0 < k < n - 2: p = prime(k) + phi(n-k)/2, prime(p) - p + 1 and (p^2 - 1)/4 - prime(p) are all prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 1, 2, 3, 1, 0, 3, 3, 2, 1, 2, 1, 3, 2, 4, 2, 1, 6, 2, 6, 2, 3, 2, 3, 6, 2, 1, 7, 2, 5, 4, 3, 4, 3, 6, 4, 5, 4, 2, 1, 2, 8, 2, 4, 5, 5, 6, 4, 5, 4, 6, 3, 3, 5, 6, 5, 3, 4, 8, 2, 3, 7, 7, 8, 5, 5, 3, 3, 7, 9, 3, 8, 2, 4, 4, 4, 9, 2, 5, 8, 5, 5
Offset: 1
Keywords
Examples
a(30) = 1 since prime(6) + phi(24)/2 = 13 + 4 = 17, prime(17) - 16 = 59 - 16 = 43 and (17^2 - 1)/4 - prime(17) = 72 - 59 = 13 are all prime. a(35) = 1 since prime(19) + phi(16)/2 = 67 + 4 = 71, prime(71) - 70 = 353 - 70 = 283 and (71^2 - 1)/4 - prime(71) = 1260 - 353 = 907 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
PQ[n_]:=PQ[n]=n>0&&PrimeQ[n] p[n_]:=p[n]=PrimeQ[n]&&PrimeQ[Prime[n]-n+1]&&PQ[(n^2-1)/4-Prime[n]] f[n_,k_]:=f[n,k]=Prime[k]+EulerPhi[n-k]/2 a[n_]:=a[n]=Sum[If[p[f[n,k]],1,0],{k,1,n-3}] Table[a[n],{n,1,100}]
Comments