This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235935 #8 Apr 06 2014 04:10:43 %S A235935 2,3,2861,8753,56821,83449,162787,165883,167197,186397,217309,261721, %T A235935 275939,309493,355571,382351,467293,501187,539303,560029,602839, %U A235935 640307,657299,708959,879859,919129,973813,1057741,1085779,1115899,1156031,1302667,1366297,1396427,1516279,1580461,1760419,1829797,1867249,1870021 %N A235935 Primes p with f(p), f(f(p)), f(f(f(p))), f(f(f(f(p)))) all prime, where f(n) = prime(n) - n + 1. %C A235935 By the general conjecture in A235925, this sequence should have infinitely many terms. %H A235935 Zhi-Wei Sun, <a href="/A235935/b235935.txt">Table of n, a(n) for n = 1..100</a> %H A235935 Z.-W. Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641, 2014 %e A235935 a(3) = 2861 with 2861, f(2861) = 23143, f(23143) = 240769 and f(240769) = 3117791 and f(3117791) = 48951967 all prime. %t A235935 f[n_]:=Prime[n]-n+1 %t A235935 p[k_]:=PrimeQ[f[Prime[k]]]&&PrimeQ[f[f[Prime[k]]]]&&PrimeQ[f[f[f[Prime[k]]]]]&&PrimeQ[f[f[f[f[Prime[k]]]]]] %t A235935 n=0;Do[If[p[k],n=n+1;Print[n," ",Prime[k]]],{k,1,100000}] %Y A235935 Cf. A000040, A234695, A235925, A235934. %K A235935 nonn %O A235935 1,1 %A A235935 _Zhi-Wei Sun_, Jan 17 2014