This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235983 #9 Dec 21 2014 12:13:43 %S A235983 5764802,146830437604322,498311414318121122,554786279519086052117762, %T A235983 830149880552636599409282,12628864335244989661982882, %U A235983 33144490094099439467757602,47203563969247823515902242,179357590196404221918909122,397370823547272766854136322,2043714066708245412886790402,139717795608648816763227344162 %N A235983 Numbers n of the form p^8 + 1 (for prime p) such that n^8 + 1 is also prime. %C A235983 All numbers are congruent to 2 mod 20. %e A235983 33144490094099439467757602 = 1549^8 + 1 (1549 is prime) and 33144490094099439467757602^8 + 1 is prime, so 33144490094099439467757602 is a member of this sequence. %t A235983 Select[Prime[Range[600]]^8+1,PrimeQ[#^8+1]&] (* _Harvey P. Dale_, Dec 21 2014 *) %o A235983 (Python) %o A235983 import sympy %o A235983 from sympy import isprime %o A235983 {print(n**8+1) for n in range(10000) if isprime(n) if isprime((n**8+1)**8+1)} %Y A235983 Cf. A060890, A006314. %K A235983 nonn %O A235983 1,1 %A A235983 _Derek Orr_, Jan 17 2014