This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235984 #7 Apr 06 2014 04:11:25 %S A235984 2,3,501187,560029,2076881,2836003,2907011,8254787,8822347,10322189, %T A235984 11329181,11354641,12307693,14528069,15801601,17757427,19023091, %U A235984 24995669,25871971 %N A235984 Primes p with f(p), f(f(p)), f(f(f(p))), f(f(f(f(p)))), f(f(f(f(f(p))))) all prime, where f(n) = prime(n) - n + 1. %C A235984 By the general conjecture in A235925, this sequence should have infinitely many terms. %H A235984 Zhi-Wei Sun, <a href="/A235984/b235984.txt">Table of n, a(n) for n = 1..19</a> %H A235984 Z.-W. Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641, 2014 %e A235984 a(3) = 501187 with 501187, f(501187) = 6886357, f(6886357) = 113948711, f(113948711) = 2224096873, f(2224096873) = 50351471977 and f(50351471977) = 1303792228393 all prime. %t A235984 f[n_]:=Prime[n]-n+1 %t A235984 p[k_]:=PrimeQ[f[Prime[k]]]&&PrimeQ[f[f[Prime[k]]]]&&PrimeQ[f[f[f[Prime[k]]]]]&&PrimeQ[f[f[f[f[Prime[k]]]]]]&&PrimeQ[f[f[f[f[f[Prime[k]]]]]]] %t A235984 n=0;Do[If[p[k],n=n+1;Print[n," ",Prime[k]]],{k,1,10^7}] %Y A235984 Cf. A000040, A234694, A234695, A235924, A235925, A235934, A235935. %K A235984 nonn %O A235984 1,1 %A A235984 _Zhi-Wei Sun_, Jan 17 2014