cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235988 Sum of the partition parts of 3n into 3 parts.

This page as a plain text file.
%I A235988 #55 Feb 09 2023 21:58:50
%S A235988 3,18,63,144,285,486,777,1152,1647,2250,3003,3888,4953,6174,7605,9216,
%T A235988 11067,13122,15447,18000,20853,23958,27393,31104,35175,39546,44307,
%U A235988 49392,54897,60750,67053,73728,80883,88434,96495,104976,113997,123462,133497,144000
%N A235988 Sum of the partition parts of 3n into 3 parts.
%H A235988 G. C. Greubel, <a href="/A235988/b235988.txt">Table of n, a(n) for n = 1..1000</a>
%H A235988 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A235988 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1).
%F A235988 a(n) = 3*n^3 - 3*n*floor(n^2/4).
%F A235988 a(n) = 3n * A077043(n).
%F A235988 a(n) = a(n-1) + 3*A077043(n-1) + A001651(n) + A093353(3n-2).
%F A235988 From _Colin Barker_, Jan 18 2014: (Start)
%F A235988 a(n) = (3*n*(1-(-1)^n+6*n^2))/8.
%F A235988 G.f.: 3*x*(x^4+4*x^3+8*x^2+4*x+1) / ((x-1)^4*(x+1)^2). (End)
%F A235988 a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 6. - _Wesley Ivan Hurt_, Nov 15 2015
%F A235988 E.g.f.: 3*x*((4 + 9*x + 3*x^2)*cosh(x) + 3*(1 + 3*x + x^2)*sinh(x))/4. - _Stefano Spezia_, Feb 09 2023
%e A235988 a(2) = 18; 3(2) = 6 has 3 partitions into 3 parts: (4, 1, 1), (3, 2, 1), and (2, 2, 2). The sum of the parts is 18.
%e A235988 Figure 1: The partitions of 3n into 3 parts for n = 1, 2, 3, ...
%e A235988                                                13 + 1 + 1
%e A235988                                                12 + 2 + 1
%e A235988                                                11 + 3 + 1
%e A235988                                                10 + 4 + 1
%e A235988                                                 9 + 5 + 1
%e A235988                                                 8 + 6 + 1
%e A235988                                                 7 + 7 + 1
%e A235988                                    10 + 1 + 1  11 + 2 + 2
%e A235988                                     9 + 2 + 1  10 + 3 + 2
%e A235988                                     8 + 3 + 1   9 + 4 + 2
%e A235988                                     7 + 4 + 1   8 + 5 + 2
%e A235988                                     6 + 5 + 1   7 + 6 + 2
%e A235988                         7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
%e A235988                         6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
%e A235988                         5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
%e A235988                         4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
%e A235988             4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
%e A235988             3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
%e A235988 1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
%e A235988    3(1)        3(2)        3(3)        3(4)        3(5)     ..    3n
%e A235988 ------------------------------------------------------------------------
%e A235988     3           18          63         144         285      ..   a(n)
%e A235988 - _Wesley Ivan Hurt_, Sep 07 2019
%p A235988 A235988:=n->3*n^3 - 3*n*floor(n^2/4); seq(A235988(n), n=1..100);
%t A235988 Table[3 n^3 - 3 n*Floor[n^2/4], {n, 100}] (* or *) CoefficientList[ Series[3*x*(x^4 + 4*x^3 + 8*x^2 + 4*x + 1)/((x - 1)^4*(x + 1)^2), {x, 0, 30}], x]
%t A235988 LinearRecurrence[{2,1,-4,1,2,-1},{3,18,63,144,285,486},40] (* _Harvey P. Dale_, May 17 2018 *)
%o A235988 (PARI) a(n)=3*n^3 - n^2\4*3*n \\ _Charles R Greathouse IV_, Oct 07 2015
%o A235988 (PARI) x='x+O('x^50); Vec(3*x*(x^4+4*x^3+8*x^2+4*x+1)/((x-1)^4*(x+1)^2)) \\ _Altug Alkan_, Nov 01 2015
%o A235988 (Magma) [3*n^3-3*n*Floor(n^2/4): n in [1..100]]; // _Wesley Ivan Hurt_, Nov 01 2015
%o A235988 (Magma) [3*n*(1-(-1)^n+6*n^2)/8: n in [1..40]]; // _Vincenzo Librandi_, Nov 18 2015
%Y A235988 Cf. A001651, A077043, A093353.
%K A235988 nonn,easy
%O A235988 1,1
%A A235988 _Wesley Ivan Hurt_, Jan 17 2014
%E A235988 a(165) in b-file corrected by _Andrew Howroyd_, Feb 21 2018