This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235992 #35 Jan 21 2023 09:33:05 %S A235992 0,1,4,8,9,12,15,16,20,21,24,25,28,32,33,35,36,39,40,44,48,49,51,52, %T A235992 55,56,57,60,64,65,68,69,72,76,77,80,81,84,85,87,88,91,92,93,95,96, %U A235992 100,104,108,111,112,115,116,119,120,121,123,124,128,129,132,133 %N A235992 Numbers with an even arithmetic derivative, cf. A003415. %C A235992 A165560(a(n)) = 0; A003415(a(n)) mod 2 = 0. %C A235992 For n > 1: A007814(a(n)) <> 1, A006519(a(n)) <> 2. %C A235992 Union of multiples of 4 and odd numbers with an even number of prime factors with multiplicity. - _Charlie Neder_, Feb 25 2019 %C A235992 After two initial terms (0 and 1), numbers n such that A086134(n) = 2. - _Antti Karttunen_, Sep 30 2019 %C A235992 A multiplicative semigroup; if m and n are in the sequence then so is m*n. (See also comments in A359780.) - _Antti Karttunen_, Jan 17 2023 %H A235992 Reinhard Zumkeller, <a href="/A235992/b235992.txt">Table of n, a(n) for n = 1..10000</a> %t A235992 Select[Range[0, 133], EvenQ@ If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger[Abs@ #]]] &] (* _Michael De Vlieger_, Sep 30 2019 *) %o A235992 (Haskell) %o A235992 a235992 n = a235992_list !! (n-1) %o A235992 a235992_list = filter (even . a003415) [0..] %o A235992 (Python) %o A235992 from itertools import count, islice %o A235992 from sympy import factorint %o A235992 def A235992_gen(startvalue=0): # generator of terms >= startvalue %o A235992 return filter(lambda n: not n&3 or (n&1 and not sum(factorint(n).values())&1), count(max(startvalue,0))) %o A235992 A235992_list = list(islice(A235992_gen(),40)) # _Chai Wah Wu_, Nov 04 2022 %Y A235992 Cf. A235991 (complement). %Y A235992 Union of A327862 and A327864. %Y A235992 Union of A359829 (primitive elements) and A359831 (nonprimitive elements). %Y A235992 Cf. A003415, A086134, A327863, A327865, A327933, A327935, A358680 (characteristic function). %Y A235992 Positions of multiples of 4 in A358669 (and in A358765). %Y A235992 Cf. also A028260, A036349, A046337, A332820 (other multiplicative semigroups), and comments in A359780. %K A235992 nonn %O A235992 1,3 %A A235992 _Reinhard Zumkeller_, Mar 11 2014