cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235994 Numbers having at least one anagram which is a cube.

This page as a plain text file.
%I A235994 #13 Feb 18 2024 14:25:01
%S A235994 1,8,27,46,64,72,125,126,152,162,215,216,251,261,279,297,334,343,433,
%T A235994 512,521,612,621,729,792,927,972,1000,1133,1269,1278,1279,1287,1296,
%U A235994 1297,1313,1331,1349,1394,1439,1493,1629,1692,1728,1729,1782,1792,1827,1872
%N A235994 Numbers having at least one anagram which is a cube.
%C A235994 An anagram of a k-digit number is one of the k! permutations of the digits that does not begin with 0.
%H A235994 Michael S. Branicky, <a href="/A235994/b235994.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale)
%e A235994 126 is in the sequence because 216 = 6^3.
%t A235994 Select[Range[2000],AnyTrue[Surd[FromDigits/@Select[ Permutations[ IntegerDigits[#]],#[[1]]>0&],3],IntegerQ]&] (* The program uses the AnyTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jul 15 2016 *)
%o A235994 (Python)
%o A235994 from itertools import count, takewhile
%o A235994 def hash(n): return "".join(sorted(str(n)))
%o A235994 def aupto_digits(d):
%o A235994     cubes   = takewhile(lambda x:x<10**d, (i**3 for i in count(1)))
%o A235994     C = set(map(hash, cubes))
%o A235994     return [k for k in range(1, 10**d) if hash(k) in C]
%o A235994 print(aupto_digits(4)) # _Michael S. Branicky_, Feb 18 2024
%Y A235994 Cf. A000578, A046810, A055098, A235993.
%K A235994 nonn,base
%O A235994 1,2
%A A235994 _Colin Barker_, Jan 19 2014