This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235994 #13 Feb 18 2024 14:25:01 %S A235994 1,8,27,46,64,72,125,126,152,162,215,216,251,261,279,297,334,343,433, %T A235994 512,521,612,621,729,792,927,972,1000,1133,1269,1278,1279,1287,1296, %U A235994 1297,1313,1331,1349,1394,1439,1493,1629,1692,1728,1729,1782,1792,1827,1872 %N A235994 Numbers having at least one anagram which is a cube. %C A235994 An anagram of a k-digit number is one of the k! permutations of the digits that does not begin with 0. %H A235994 Michael S. Branicky, <a href="/A235994/b235994.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale) %e A235994 126 is in the sequence because 216 = 6^3. %t A235994 Select[Range[2000],AnyTrue[Surd[FromDigits/@Select[ Permutations[ IntegerDigits[#]],#[[1]]>0&],3],IntegerQ]&] (* The program uses the AnyTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jul 15 2016 *) %o A235994 (Python) %o A235994 from itertools import count, takewhile %o A235994 def hash(n): return "".join(sorted(str(n))) %o A235994 def aupto_digits(d): %o A235994 cubes = takewhile(lambda x:x<10**d, (i**3 for i in count(1))) %o A235994 C = set(map(hash, cubes)) %o A235994 return [k for k in range(1, 10**d) if hash(k) in C] %o A235994 print(aupto_digits(4)) # _Michael S. Branicky_, Feb 18 2024 %Y A235994 Cf. A000578, A046810, A055098, A235993. %K A235994 nonn,base %O A235994 1,2 %A A235994 _Colin Barker_, Jan 19 2014