This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A235998 #54 Oct 18 2021 08:18:36 %S A235998 1,2,2,2,3,5,2,14,4,22,6,2,44,18,4,68,56,3,107,146,4,172,312,24,2,261, %T A235998 677,84,6,396,1358,288,2,606,2666,822,4,950,5012,2226,4,1414,9542, %U A235998 5304,120,5,2238,17531,12514,480,2,3418,32412,27904,1800,6,5411,58995,61080,5580 %N A235998 Triangle read by rows: T(n,k) is the number of compositions of n having k distinct parts (n>=1, 1<=k<=floor((sqrt(1+8*n)-1)/2)). %C A235998 Row n has length A003056(n) hence the first element of column k is in row A000217(k). %C A235998 The equivalent sequence for partitions is A116608. %C A235998 For the number of compositions of n see A011782. %C A235998 For the connection to overcompositions see A235999. %C A235998 Row sums give A011782(n), n >= 1. %C A235998 First column is A000005, second column is A131661. %C A235998 T(k*(k+1)/2,k) = T(A000217(k),k) = A000142(k) = k!. - _Alois P. Heinz_, Jan 20 2014 %H A235998 Alois P. Heinz, <a href="/A235998/b235998.txt">Rows n = 1..500, flattened</a> %e A235998 Triangle begins: %e A235998 1; %e A235998 2; %e A235998 2, 2; %e A235998 3, 5; %e A235998 2, 14; %e A235998 4, 22, 6; %e A235998 2, 44, 18; %e A235998 4, 68, 56; %e A235998 3, 107, 146; %e A235998 4, 172, 312, 24; %e A235998 2, 261, 677, 84; %e A235998 6, 396, 1358, 288; %e A235998 2, 606, 2666, 822; %e A235998 4, 950, 5012, 2226; %e A235998 4, 1414, 9542, 5304, 120; %e A235998 5, 2238, 17531, 12514, 480; %e A235998 2, 3418, 32412, 27904, 1800; %e A235998 6, 5411, 58995, 61080, 5580; %e A235998 ... %p A235998 b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, %p A235998 expand(add(b(n-i*j, i-1, p+j)/j!*`if`(j=0, 1, x), j=0..n/i)))) %p A235998 end: %p A235998 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2, 0)): %p A235998 seq(T(n), n=1..25); # _Alois P. Heinz_, Jan 20 2014, revised May 25 2014 %t A235998 b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, Sum[b[n-i*j, i-1, p+ j]/j!*If[j==0, 1, x], {j, 0, n/i}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 1, 25}] // Flatten (* _Jean-François Alcover_, Dec 10 2015, after _Alois P. Heinz_ *) %Y A235998 Cf. A003056, A116608, A235790, A235999, A236002. %K A235998 nonn,tabf,nice,look %O A235998 1,2 %A A235998 _Omar E. Pol_, Jan 19 2014 %E A235998 More terms from _Alois P. Heinz_, Jan 19 2014