A236067 a(n) is the least number m such that m = n^d_1 + n^d_2 + ... + n^d_k where d_k represents the k-th digit in the decimal expansion of m, or 0 if no such number exists.
1, 0, 12, 4624, 3909511, 0, 13177388, 1033, 10, 0, 0, 0, 0, 0, 2758053616, 1053202, 7413245658, 419370838921, 52135640, 1347536041, 833904227332, 5117557126, 3606012949057, 5398293152472, 31301, 0, 15554976231978, 405287637330, 35751665247, 19705624111111
Offset: 1
Examples
12 is the smallest number such that 3^1 + 3^2 = 12 so a(3) = 12. 4624 is the smallest number such that 4^4 + 4^6 + 4^2 + 4^4 = 4624 so a(4) = 4624. 1033 is the smallest number such that 8^1 + 8^0 + 8^3 + 8^3 = 1033 so a(8) = 1033.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..500 (n = 1..100 from Hiroaki Yamanouchi)
- John D. Cook, Monday morning math puzzle (2012).
- Shyam Sunder Gupta, Digital Invariants and Narcissistic Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 21, 513-526.
- Dean Morrow, Cycles of a family of digit functions
Programs
-
PARI
Min(n)=for(k=0,oo,if(n+k<=10^k,return(10^k))) Max(n)=for(k=1,oo,if(k*n^9<=10^k-1,return(10^(k-1)))) a(n)={for(k=Min(n), Max(n), my(d=digits(k)); if(sum(i=1,#d,n^d[i])==k, return(k))); 0} { for(n=1, 100,print1(a(n), ", ")) } \\ Derek Orr, Aug 01 2014; corrected by Jason Yuen, Feb 25 2025
Extensions
More terms and edited extensively by Derek Orr, Aug 26 2014
a(21)-a(30) from Hiroaki Yamanouchi, Sep 27 2014
Comments