cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236070 Primes p such that f(f(p)) is prime where f(x) = x^8 + 1.

This page as a plain text file.
%I A236070 #12 Dec 17 2022 15:20:20
%S A236070 7,59,163,929,977,1373,1549,1619,1913,2113,2593,4397,5417,5651,6397,
%T A236070 6659,6833,7351,7793,7883,8641,9719,10091,10477,10949,11243,12239,
%U A236070 13441,13457,13691,14753,15349,15467,15971,17747,19051
%N A236070 Primes p such that f(f(p)) is prime where f(x) = x^8 + 1.
%F A236070 a(n) = (A235983(n)-1)^(1/8).
%e A236070 1619 is prime and (1619^8+1)^8+1 is also prime.
%t A236070 Select[Prime[Range[2500]],PrimeQ[(#^8+1)^8+1]&] (* _Harvey P. Dale_, Dec 17 2022 *)
%o A236070 (Python)
%o A236070 import sympy
%o A236070 from sympy import isprime
%o A236070 {print(p) for p in range(10**5) if isprime(p) and isprime((p**8+1)**8+1)}
%o A236070 (PARI) isok(p) = isprime(p) && (q = p^8+1) && isprime(q^8+1); \\ _Michel Marcus_, Jan 19 2014
%Y A236070 Cf. A235983.
%K A236070 nonn
%O A236070 1,1
%A A236070 _Michel Marcus_ and _Derek Orr_, Jan 19 2014