cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236072 Numbers n such that n^4 + n + 1 and n^4 - n - 1 are prime.

This page as a plain text file.
%I A236072 #12 Jan 20 2025 10:45:24
%S A236072 2,5,6,9,11,26,44,60,77,147,239,384,545,690,770,779,1071,1127,1190,
%T A236072 1271,1296,1331,1506,1659,1707,1871,1880,1986,2037,2442,2520,2541,
%U A236072 2714,2960,2982,3045,3060,3110,3189,3287,3464,3609
%N A236072 Numbers n such that n^4 + n + 1 and n^4 - n - 1 are prime.
%H A236072 Harvey P. Dale, <a href="/A236072/b236072.txt">Table of n, a(n) for n = 1..1000</a>
%e A236072 384^4 + 384 + 1 and 384^4 - 384 - 1 are both prime, so 384 is a member of this sequence.
%t A236072 Select[Range[4000],AllTrue[#^4+{#+1,-#-1},PrimeQ]&] (* _Harvey P. Dale_, Jan 20 2025 *)
%o A236072 (Python)
%o A236072 import sympy
%o A236072 from sympy import isprime
%o A236072 {print(p) for p in range(10**4) if isprime(p**4-p-1) and isprime(p**4+p+1)}
%o A236072 (PARI)
%o A236072 s=[]; for(n=1, 4000, if(isprime(n^4+n+1) && isprime(n^4-n-1), s=concat(s, n))); s \\ _Colin Barker_, Jan 19 2014
%Y A236072 Numbers in both A126424 and A049408.
%K A236072 nonn
%O A236072 1,1
%A A236072 _Derek Orr_, Jan 19 2014