cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236073 Primes p such that p^4 + p + 1 and p^4 - p - 1 are also prime.

This page as a plain text file.
%I A236073 #7 Jan 19 2014 04:43:21
%S A236073 2,5,11,239,1871,4001,4397,6971,12647,12689,13337,13619,15401,19391,
%T A236073 19559,19739,20201,20297,22871,22937,28307,30029,32561,36299,36929,
%U A236073 39569,44279,45497,47441,48767,50069,53897,55871
%N A236073 Primes p such that p^4 + p + 1 and p^4 - p - 1 are also prime.
%C A236073 Primes in the sequence A236072.
%e A236073 6971 is prime, 6971^4 - 6971 - 1 is prime, and 6971^4 + 6971 + 1 is prime. So 6971 is a member of this sequence.
%o A236073 (Python)
%o A236073 import sympy
%o A236073 from sympy import isprime
%o A236073 {print(p) for p in range(10**5) if isprime(p**4+p+1) and isprime(p**4-p-1) and isprime(p)}
%o A236073 (PARI) s=[]; forprime(p=2, 55871, if(isprime(p^4+p+1)&&isprime(p^4-p-1), s=concat(s, p))); s \\ _Colin Barker_, Jan 19 2014
%Y A236073 Cf. A236072, A236071, A236044.
%K A236073 nonn
%O A236073 1,1
%A A236073 _Derek Orr_, Jan 19 2014